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Abstract

The present paper is a final technical report on the research programme NCCW-73
accomplished within co-operation between NASA of the USA and GOSKOMOBORONPROM
of Russia in the field of acronautics. The report contains basic results of studies in two areas,
"Analysis of postbuckling behavior of composite panels" and "Development of general model of
joints in composite structures”; these results were obtained in conformity with requirements of
NCCW-73.

In addition, consideration is given to some related issues, and proposals for further
studies are formulated.
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1. Introduction

Implementing the composite structures is regarded as one of the most important arcas of
improving the state-of-the-art aircraft and space technologies. Of current interest here are
insufficiently explored problems of stability and postbuckling behavior of thin-walled composite
structures, as well as the evaluation of stresses in, and strength of, joints in the composite
structures. The Russian/American joint working group on aeronautics established within the
limits of co-operation between GOSKOMOBORONPROM and NASA has sclected these
problems as high priority for co-operation in the period 1995 - 1996; they are the core of the
NCCW-73 joint research programme.

In accordance with the requirements of NCCW-73 the present rcport provides major
results of studies accomplished by specialists of TsAGI and MGATU. The results are grouped
into two large parts: "Postbuckling behavior of composite panels” and "General model of joints
of composite structures"; these are presented in the report sections 2 and 3, respectively.

The paper is devoted mainly to theories, but, with the aim to validate the computational
models, contains in some areas comparison with test results. Problem formulation, basic
assumptions and the underlying relationships are exposed for each of the parts at the beginning
of the corresponding sections. Both parts contain not only the computational algorithms but also
examples of concrete analyses and some recommendations.

Concluding remarks on the work as a whole, the lists of references used, and Appendices
are provided in sections 4, 5, and 6 of the report.

Authors wish to thank Dr. D.Starnes of NASA Langley Research Center for close
collaboration in formulation and discussion of the work, and make excuses for the unavoidable
brevity of presentation -- and for some imperfection in the document design.
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2. Part 1. Postbuckling behavior of composite panels

It is generally known that a cover skin in a stiffened panels of a thin-walled aerospace
structure can buckle locally under compression, shear and multiaxial stresses when loads are less
than the limit values. There arises the problem to evaluate the load-carrying capability of such
structures, taking into account the nonlinear postbuckling behavior of skins. In this case, one is
required, firstly, describe rather adequately the stress-strain state (SSS) of buckled skin cells
between the stiffeners; secondly, the loss in stiffnesses of the buckled skin should be allowed for
in the global analysis of the built-up structure. As applied to metal structures, these two aspects
of the problem were studied analytically, by experiment and numerically in a large number of
papers, starting from the classical works of Bubnov, Karman, Papkovich, Timoshenko,
Marguerre, and Wagner [1 - 9].

For structures with composite materials similar studies were conducted in the recent years
only (for example, see writings by NASA Langley Research Center specialists M.Stein,
D.Starnes, and M.Nemeth [10 - 12]), chiefly in the first of the above aspects. Taken into
consideration are important features of the composite structures such as anisotropy, multiple
layers, brittleness; these are known to substantially complicate the problem and make the
composite panel postbuckling behavior notably differing from behavior of metal parts.

The present paper attempts an enginecring approach to the problem for multiaxially
(compression and shear) loaded flat stiffened panels, paying attention to determination of both
postbuckling behavior of an individual cell (a plate) in the composite skin and
stiffnesses/strengths of the panel as a whole which is composed of rectilinear ribs and the
buckled skin that interact. The work is assumed to be continued, first of all, towards
complication of both the structure geometry and the load conditions.

2.1. Problem formulation and principal relationships for orthotropic panels and plates

A panel is assumed to be an orthotropic, symmetric-layup composite plate uniformly
stiffened with ribs (with the step sizes a and b) with no eccentricity in the two mutually
perpendicular directions, see Fig. 2.1. The plate thickness and stiffnesses are uniform; the
orthotropy axes coincide with directions of longitudinal and transverse ribs. All ribs of a
particular direction are made of a unidirectional composite or a metal; their characteristics are
identical in the two directions. The panel is loaded in plane by uniform compression or tension
along the two axes and by shear. In both prebuckling and postbuckling stages of skin
deformation every periodically repeated fragment (consisting of the rectangular skin cell and the
adjacent rib portions) is in identical conditions, and its ribs and edges {x=0, x=a, y=0, y=b} of
cell (which is plate with dimensions a and b) remain rectilinear. If the rib torsional stiffness is
insignificant and the buckled panel has the out-of-plane displacement w(x.y), for this
displacement we have simple support boundary conditions at these edges.

Thus, the postbuckling behavior of the panel after skin buckling, is characterized by an
identical multiaxial bending stress-strain state in cach cell; it is described by nonlinear equations
of Karman type with the corresponding boundary conditions. In this connection the longitudinal
forces redistribute between the ribs and the skin, and the cells behave as panels with lowered
(reduced) stiffnesses. Subsequently, the panel can fail in certain areas of the skin/ribs or because
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of global buckling of the panel as a whole (i.c., as an inscparable combination of ribs and the
skin with reduced characteristics).

Below, in 2.2 - 2.4, we provide the analytical solution to the problem on stability and
postbuckling behavior of the simply supported orthotropic panel, the solution being valid for
both a cell of the skin in the panel above and the separate unstiffened composite plate. This
solution is the basis for us to consider in 2.4 more thoroughly

- strength and stiffnesses of a buckled skin and

- aspects of its interaction with ribs in the stiffened fiber reinforced laminate.

The major goal here is to derive rather simple formulaec for calculating the reduction
coefficients that are included in the general analysis and including (in particular cases of
compression/shear loaded metal panels) the classical results by von Karman and Marguerre.

Let us adopt the assumptions (traditional for multilayer composites) about
quasihomogeneity and orthotropy of the layers and their being elastic; with this, stresses and
strains in a k-th layer are interrelated by the generalized Hooke's law [13, 14]

K

C, €y

K ..
o, b =[ci] eyt =123 2.1)
txy ny

Here Cj are layer stiffnesses referred to the x and y axes; sigma and epsilon are the
stresses and the strains in the layer. In accordance with the Kirchhoff-Love hypothesis, the
strains are

Ex Ex0 xx
€y =1Ey0 (T2 Xy [ > 2.2)
Y xy Y xy0 Axy

(the z coordinate is measured from the panel mid-surface along the normal thereto ), and
the strains and curvatures of the mid-surface {€o}, {x} are related to its displacements u, v, W
as follows:

Lo 1few) v ifaw)’ du dv . owow
€ 0—_+— — 8y0__+_ — i 'nyo—?a;*'?a;*'a-a‘,

0= o 2\ oy 2\ay
O*w o*w o*w
Xx = __5)(_2 ’ X,y = —_a? ’ xxy =-2 axay . (2'3)

Assume that the multilayer composite panel fails when any of the layers reaches its
limiting state at any point. The limiting state is determined by using an appropriate polynomial
strength criteria based on stresses along the layer orthotropy axes.

Adopting these assumptions, the following relationships are valid for the panel as a
whole:
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- elasticity:

(M=l ol

B, B, 0 0 0
B,y B, 0 0 0
B 0 0 0 By 0 O
where =
0 D 0 0 0 Dy Dp
0 0 0 Dy Dy O
0 0 0 0 0 Dy

e~ e i e BN

- equilibrium equations in terms of displacements:

Ou o du Fv . owdtw ow Pw . owdw
B, +By3—5+(B;, +By)) ——+B;, 5+ (B, +By)— +By Yy,
ox ay Ox0y ox ox’ 3y oxdy X By
(2.5)
otu ot 62 ow 52 ow &*w ow &*w
(Biz + By3) ——=+By; —5 + By —— +(By, + By) —~ +By 5By ———5=
oy Vot oy oxoxdy oyoy oy &x
o'w o'w o'w . dw . dw Fw
Dllng+2(D12+2D33)axzay2+D22 ay4 "Nx axz '—I\Iy ayz —ZNKy—ax—ay:()’

(2.6)
- expression for the total potential energy:

_lﬂls @+l(@)22 2B,,| & ](awjz il 1(6w)2 + @.7)
Togd| Mex 2\ax 2% "2 o 25y '
> 1fow)] du ov owow) Pw)’
+B,,l —+—= ( ) +B33(-—+—+——) +D“(—w) +
dy 2\dy dy ox Ox oy ox’

2 2 2
20,2 gwow +D22(6—Wj 41)33(a j +2Tx@+2Ty@+2Txy(‘—35+@) dxdy.
ox* oy’ oy’ Ox0y X oy dy 0Ox

Here, {N}=[NxNnyy]T, {M}=[MxMnyy]T are the stress resultants and the moments in
the plate; Ty, Ty Txy (refer to Fig. 2.1) are the external loads; Bj; and Dy; are panel stiffnesses to
be determined on the basis of [Cij]K by using the usual equations from [14, 15].

When analyzing behavior of the skin and ribs in a panel, use is made of
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- conventional conditions of equilibrium and their joint deformation and
- the relations of the clastic bar theory.

2.2. Stability of orthotropic plates

Following the suggested applied method for analyzing the load-bearing capacity of
composite panels, the first stage is to determine eigenvalues and the corresponding proper
functions of the boundary value problem that describes stability of an orthotropic panel under
compression, shear, and multiaxial load. Write the out-of-plane displacement of the simply
supported panel as the double trigonometric series:

W= D> Apsinhxsindy Anp=mn/a, A,=nn/b, (2.8)

m=ln=I
where a and b are the length and the width of the panel.

Substitute the expansion (2.8) into the equilibrium equation (2.6) in which the stress
resultants in nonlinear terms should be replaced by their subcritical values, i.e., Nx=-Tx, Ny=-Ty,.
Nyy=-Txy. Applying thc Bubnov-Galerkin procedure, obtain the infinitc homogencous system of
lincar algebraic equations for the vector {A}:

M] {A} =0, (2.9)

where [M] is a square matrix whose diagonal coefficients are of form

2
Y - fDl,Dzz(m4a+2m2nzB+n4/a)—Txmz—Tynza /b

2

Off-diagonal coefficients of the matrix [M] are written as

32a mnij L mEi=135.
nlb "y(m2_i2)(n2_j2) P ntj=135,..;

My =9
(d=D)

0 npdy mxti=246,..; ntj=246,...

b2

a:_’Dn B:D|z+2D33.
a’ YDy VD1 D2,

Critical stress resultants of compression (Tx* and Ty* ) and shear (Txy* ) arc sought in the
following form:
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(=)

*

9 3
- T~ - * T - -
Lo =p7ybnby ke Ty =23yDuDy ke Ty = ~JD; Dy k.

(2.10)

o‘|;1

Transform the set of simultanecus equations (2.9) taking into account (2.10):

[M] {4}=%-yD,D,, [M] {a}=0.

where [M] is a matrix whose clements depend on cocfficients ky, ky, and kyy:

A 2 2 2 22,2
Mad = m™n"kma - kxm” - kyn"a”/b”,

r32a mnij mz+*i=135...,

b Yal ) nt =135
Ma =1 (m ~1)(n _J) TIT
(d=1)

0 for m*ti=246,...; ntj=1246,...

k,, =m’a/n’+2B8+n’/(am?).

For the particular loading cases we will find eigenvalues and their proper vectors of the
matrix [M] and study the influence of the stack orthotropy on panel stability.

2.2.1. Compression

In the case of uniaxial compression the set of equations (2.9) breaks down into individual
equations for the coefficicnts ky :

kx = kmnn2 .

Each value of ky is corresponded to by an eigen vector {q}=[0, O, .., qmn=1, O, ...]" and
a natural shape w=sinA_ x sinA_y. The stability coefficient k. is found from the condition

k;: min(ky); the numbers of half-waves, m and n, at which kx becomes minimum, are hereafter
identified by mo and no (ng =1 for uniaxial compression). The stability cocfficient ke is

corresponded to by the natural shape w =sin(mynx/a) sin(my/b). The critical compression

stress resultant Tx* is found by using (2.10).

Study the influence of the fiber orientation angle on stability of orthotropic panels made
from carbon fiber reinforced plastic. Assume that the stack consists of alternating layers with
fiber orientation angles +¢ and -@; the total thickness of the layers h=1.1 -10m; characteristics
of an clementary layer: E; = 180 GPa, E; = 6.2 GPa, Gi2 = 5.0 GPa, 2 = 0.26; panel
dimensions, a=b=0.4 m. Figure 2.2 shows the function Tx*(i(p) (line 1). For a square panel the
critical stress resultant reaches its maximum at the fiber orientation angle ¢= +45°.

2 Part 1 Postbucklinog behavior of comnocite nanelc 9



This solution conforms to the case of free lateral displacement of longitudinal edges. It is
known that airframes usually incorporatc multispan panels. Displacements of longitudinal edges
of such a panel (being a skin supported by stringers) can be restrained or not allowed at all. In
this case the plate compression loaded in a particular direction may expericnce biaxial
compression due to the Poisson effect, sce [16]. Let us consider two types of boundary
conditions:

- panel edges can freely displace in plane (configuration 1);

- longitudinal edges of the panel cannot displace laterally (configuration 2).

In the first case, Ty= 0 over the longitudinal edges. In the second case, a mutual
displacement of longitudinal edges along the OY axis is absent, i.e., Av=v(y=b)-v(y=0)=0.
Solution of the two-dimensional problem provides Ty= TxB12/B11. Thus, the plate is subjected to
biaxial compression. Combinc the homogeneous systems of linear algebraic equations
corresponding to the two types of panel boundary conditions. In this case the only change will
be in diagonal components of the matrix [M]:

2
n

M, :—BTJDHD22 (m‘a+2m2nZB+n4/a)-Tx(m2+fxn2az/b2) :

Here fy is a coefficient depending on the conditions posed on the edge displacements;
f,=0 for the configuration 1, and fx=B12/B1; for the configuration 2. The curve 2 in Fig. 2.2
corresponds to the case of uniaxial compression of a panel with fixed longitudinal edges. For a
square panel the criical compression stress resultant reaches its maximum at the fiber orientation
angle +35°.

Let now the plate whose edges can displace freely, is subject to compressive stress
resultants Tx and Ty. Determine the critical compression stress resultants T« and Ty . The
generic homogeneous system of linear algebraic equations (2.9) breaks down into individual
equations for the coefficients ky and ky:

kx + ky(na)*/(mb)* = n’kunn . (2.11)

From (2.11) we establish coefficients kxo and kyo for the panel loaded with "isolated”
stress resultants Tx and Ty. If Ty=0 then Kxo=n’kmn, and kyo=m’kmn(b/a)’ for Ty=0. By
minimizing ko and kyo with respect to the numbers m and n we determine the stability
coefficients: kxo*=min(n2kmn) and kyo*=min[m2kmn(b/a)2]. Return now to the case of biaxial
compression and determine the stability coefficients ki and k,. Let the stress resultant Ty is
varied in proportion to the stress resultant Tyt Ty= yTx. From (2.11) (after simple
transformations) one can find

_ k,n’ vk’
I+ wy(na/mb)* " I+y(na/mb)?

X

By minimizing kx and ky with respect to the numbers of half-waves, find the stability
coefficients for the proportional loading:

k, = min Kl =1 Ky = Wy .
I +y(na/mb)

2. Part 1. Postbuckling behavior of composite panels 10



The pair { Ky, ky* } is corresponded to by the natural shapc
w =sin(mnx/a) sin(n,my/b) .

Use now (2.10) to determine the critical compression stress resultants Tx and Ty* and
study the effect of the fiber orientation angle fi on stability of panels made from carbon fiber
reinforced plastic. Figure 2.2 shows the function Tx (+¢) for a square panel (line 3) and a
rectangular panel (a/b=3, line 4) under the proportional loading (y = 0.3). Applying a biaxial
compression, the critical stress resultants in the square plate are maximum at ¢ = +45°, and
those in the rectangular plate, at @ = £55°.

2.2.2. Shear

Assume that the orthotropic plate is loaded with a shear flow Ty only. Elements of the
matrix [ M ] in this case are
M dd = rrlznzkmn 5

32a K mnij

My = b W(mz_iz)(nz_jz)

d=) 10 for m+i=246_..n%tj=246

sy e

for mzxi=135...,nt)=135,.;

Transform the homogencous system (2.9) of linear algebraic equations into
[S] {A} -2 {A}=0. (2.12)
Here [S] is a square matrix whose components include
mnij

'mn (m2 ~ iz)(nz - j2) for
S a =

(d=D) 0 for m+i=246,...;ntj=246,...,

m+i=135...,ntj=135...;

32a

7t2b(m4a +2m?n? +n* /a).

Saa =1, I'mn

The cigenvalues A are related to the coefficients kyy via the equality kxy = 1/(A -1). The
matrix [S] for our problem is asymmetrical and may be transformed into an upper (or lower)
Hessenberg matrix; thereafter the QR-factorization or QL-factorization may be employed to
compute ecigenvalues A and eigen vectors {q}, refer to [17]. The stability coefficient k*xy is
found from the condition k*xy=min[1/(7» -1)] = /[max( A)-1]. It has the eigen vectors {q*} and
the natural mode

2. Part 1. Postbuckling behavior of composite panels 11



w = 3> qua sinAx sink,y.

m=1n=l

Consider the effect of the fiber orientation angle ¢ on critical shear stress resultant T*xy,
derived from (2.10) for the abovesaid orthotropic panel out of carbon fiber reinforced plastic:
laminate thickness h=1.1 10" m; width b=0.4 m; length a=(0.4; 0.8; 1.2; 2.0) m. The results are
presented in Fig. 2.3. It is usual to assume that the structures loaded in shear should have fibers
laid at an angle of +45°. Examination of T*xy(i(p,a/b) suggests that such a layup is effective for
square panels only. As to rectangular panels, a maximum value of critical shear stress resultants
is achieved with different fiber orientation angles. In particular, for a panel with the aspect ratio
a/b=3 the maximum value of T, is achieved at =%+59°. The difference between
T*xy(i45°)=3.2 kN/m and T*xy(i59°)=3.8 kN/m is 18.7%, i.c., the critical shear stress resultant
reduces notably, and the structure gets less effective in respect of weight. The computation was
based on 30 terms of the series.

The results of computation of critical shear stress resultants were validated
experimentally by using a plate out of CFRP reinforced at an angle of #45° and having the
following characteristics: a=0.196 m; b=0.096 m; D;1=D22=0.685 Nm; D;»=0.548 Nm;
D33=0.585 Nm. The experimental value of the stability coefficient is k*xy=9.67, scec [18]; the
theoretical value is k*xy =9.79, i.e., the computed results satisfactorily correlate with the
experiment. Figure 2.4 demonstrates the shape of the panel surface after buckling, and Fig. 2.5
shows the natural mode of the experimental panel. The comparison of the natural mode with the
postbuckling shape of the surface shows that there exists similarity between them.

2.2.3. Multiaxial load

Address the stability of a plate under axial compression and shear (Tx # 0, Tyxy = 0).
Make use of the earlier obtained values of the critical stress resultant of compression, T*xo, and
shear, T*xyo, (for the cases of the loads being applied scparately) and establish dependence
between Ty and Ty at instant of buckling. Assume that Ty is varied in proportion to the critical
compression stress resultant T o: Tx=\uT*xo. Matrix [ M ] elements will be of form

M = mznzkmn -y k*,‘o(m2 + fxnzazlbz) :

32a K mnij

My = wb W(mz_iz)(nz_jz)

(d=I) 0 for mxi=246,.,ntj=24,6

for  m+i=135..,nt)=135,

IXEER

Transform the matrix [M ] by analogy with transformations carried out for the problem
on stability under shear.

From the set of simultaneous equations of (2.12) type, by using the technique described
in 2.2.2 and specifying a series of values of y, one can establish the function k*xy=f(\uk*xo).
Figure 2.6 shows examples of the relations for

2 Part 1. Postbuckline behavior of composite nanels 12



- the CFRP plate above ((a/b=1, ¢=145°)) with free edges () and
- a plate with longitudinal edges not moving laterally (+).
Curves in Fig. 2.6 correspond to the equation

2
T
T_3+{ ;YJ -1 . (2.13)

From this Figure it follows that the results can well be described by formula (2.13); the
latter allows analysts to use the values of critical stress resultants T xo and T*xyo to determine
the stress resultants Tx and Txy at which the plate buckles.

2.3. Postbuckling behavior of plates

Let us make use of the previous section's natural modes to approximately determine
postbuckling out-of-plane displacement of a plate. Express the buckling out-of-plane

displacement wg in the form of a product of an unknown amplitude A, and a natural mode w:

Wo = A,W=A,Y Y qunSinAyx sindgy. (2.14)

m n

Let us assume that, under the proportionally increasing loads [T,(TyT,(y]TZ[T*XT*yT*,(y]T
(not far in excess of the critical stress resultants) the plate out-of-plane displacement shape is
similar to the natural mode w’ corresponding to the minimum ecigenvalue. The subsequent
loading can change the out-of-plane displacement - a jump to the shape corresponding to the
second eigenvalue etc. From the first two differential equations of equilibrium (2.5), taking into
account (2.14), we write mid-surface displacements

Aj
16

u=Cx+Coy+

qumn(qmn;1 + 22 Zqij;2) .
m n i

(2.15)
2

A — —
v=C3X+C4y+1—6° 22 A @ma Vi + 22 q5V2):

m n i j

Here

2
— B
U, =-A, (l - &“——Q) SIN2A X + A, Iy SiN2A  XCOS2A,.Y,

m 1l

2

- !
v, = —kn(I——"‘—‘zJ Sin2A,y + A 1, COs 2A  XSin2A,y,
A5 B
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52 = km[r3 sin(Ay, —A)x cos(hy, —A )y +rssin(Ay, +X)x cos(A, +A))y+

+r1ysin(A, —A;)x cos(A, + kj)y +1rgsin(A, +A;)x cos(A, — kj)y] ,

_\;2 = ?»n[rn cos(Ayy — Ap)x sin(A, — Ay + fscos(Ay +A;)x sin(A, +A;)y +

+ 7 cos(Ay — Ax sin(A, + Ay + g cos(Ay + Ap)x sin(A,, — lj)y] ;

m, n, i, and j are numbers of half-waves (m # i, n # j);
I D5 nle T LI s, 7 fe - are coefficients to be evaluated in pairs from systems of

linear algebraic equations

[L}{r}={B},

where [L] is a 2x2 (square) matrix, {B} is the right-hand side column.
For an orthotropic plate we have ri=r;=1, and the matrix [L] and the vector {B} for

determining coefficients [r3r13]T, [r51‘15]T, [r7r17]T, [rgng]T are of form

2 2
[L]= Bty +Basty  (Ba + Bty
(B2 +By)tit;  Buatl + Byt

{B} B (B] 17\46] + BIZ)"n}‘jSZ /}"m)tl +2B33Kjt262
Bl 2B33;\.jt]62 +(B|2>»i62 + BZZ}"n)"jSl /;“m)tZ ’

where the values ty,tz, 8;, 82 should be

G=Am-Ai, 2=A-Aj, i1 =d=1;
1 = Am + A4, 12=>\,n+lj,51=52=-1;
h=Am-AM L=A+4, §1=-1,8=1
11 = Am + A, l2=7»n-)\.j, d1=1,8=-1.

The constants C;,C2,C3,Cs for (2.15) are determined from the integral boundary
conditions over the plate contour. In the case of a plate with freely moving longitudinal edges

these conditions are

b a
INXdy =-T,b npu x=0,4; INydx =-Tya npu y= 0,b;
0 0

(2.16)

a
Inydx =-Ty,a npu y=0Db.
0

For a plate with fixed longitudinal edges the boundary conditions are written as
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[Ndy=-Tb npn  x=0a Av=v(y=b)-v(y=0=0 ;
(2.17)

a
Inydx =-Tyya npu  y=0Db
0

We should determine stress resultants Ny, Ny, Nyy by means of equations (2.3), (2.4),
(2.14), and (2.15) and substitute these into the boundary conditions (2.16) or (2.17). Proceeding
in this way, find

Cp =BTy +BoTy ~AJ S T qhn (M +Berh) /8, Cp+Cy=—PgTyy

m n

2 2 2
Cyq =BTk -B3Ty —AOZZquB-/}\'n /8 .
m n
If the cdges of a plate can displace freely, then
B1=B22/B, B2=Bi/B, B:=B11/B, Be=0, Br=1, Bs=1/Bss, B=B; Bz - B’p.
If it is not the case, then B1=1/Byi, B2= B3 = B7 =0, Pe= B12/B11, PBs=1/Bas.
Having fixed Ao the out-of-plane displacement (2.14) and displacements (2.15) are
ecmployed to find deformations, stress resuitants, and moments in the plate after buckling:

ex0 = -BiTx +ByTy + Afex /8 L eyo = ~ByTy +BTc +Afey /8

(2.18)
)-
Yxy0 = _BSTxy +A07xy /18
N
N, =-T, +AJ(Bj ex +Bjpey) /8, Ny =-T, + Aj(Bj,ex +Byey) /8,
N (2.19)

Ny =-Tyy +AfBs37,, /8 ;
My = AOZZan(Dllﬁn +D12)‘2n)51n)‘mx sinApy ,

m n
My =A0Y. Y Qmn(DigAh + DppAd)sinAyx sind,y (2.20)

mn
My =-2A0D" > qmnD33Am ApCOSApX cOSA,y .

m n

Here, the following notation is introduced:
£x = ZZ{qu (—BgA% +By A% cos2A,x / By, — A%, cos2A,y) +
m n

+qmnxmzzqﬁxi[ £ oAy ~ A)X cOS(hy = A}y +F3C08(hy +A;)X COS(hy +A[)y+
T

+scos(hp —A)x cos(h, +A;)y +f7cos(h, +Ai)x cos(A, —A;)y ] } ,
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gy = ZZ{ Qan| (1-B)AL +By323, cos2h,y /By — A% cos2h0 %) ]+
m n

+qmnanZqijkj[f” cos(hy —A)x cos(h, —A;)y +fi3cos(hy, +A)x cos(h, +Aj)y +
i

+£5005(h — A)X €OS(hy +A ;)Y +£7C0S(hyy +ADX COS(hy — A )Y ] } :

Yy =23 qmnxnzzqijxj[ fyy Sin(hy —ADX SiN(hy —A;)y +Faq Ay +A))X sin(d,
m n i ]
+f26Sin(hy, —A;)x sin(A, +4,)y +fgsin(Ay, +A;)x sin(A, —4;)y ] ,

A ( Ty for plate with freely moving edges,
Ty = {
\ T«B12/B1; for plate with fixed longitudinal edges.

Coefficients f1.f3,...,f23 of series for strains €x, €y, v, are:

fi= 14r3( Am- M)/ A fii= 14113 Am(Aa - A)/(Aa Ay)

f3=-14rs(Am+Ai) A, fia=-141r15 Am(An + A)/(An Ay)
fs=-14r7(Am- M)/ A, fis= 14117 Am(Aa + A)/(An Ay)
f7= 14ro(Am+ M)/ Ai fi7=-14r19 Am(Xn - A)/(Rn Ay) ,

f22= ra(An- 7\.1')/ lj+r13).m()»m - M)/)\,j+2 ,
f24= rs(Ant+ Aj)/ AjtrisAm(Am + A)/A-2
fa6= r7(An- A Aj+r17Am(Am - A)/A+2
f28= ro(An- Xj)/ Xj+r19km(km + Xi)/lj-z .

Relations (2.14) and (2.19) do not make it possible to accurately satisfy the third
cquilibrium equation (2.6). To construct an approximate solution, make use of the energy
functional (2.7). Substitute in (2.7) the mid-surface displacements (2.14) and (2.15) to obtain
after integration:

ab
D = _T[Tx(BlTx —B2Ty) + Ty(B3Ty - B2T) +T’?YBB]+
) I (2.21)
s MCa(— 4 0
+ A3 TS (N- Ty, ~Tyor, ~Tygay )+ A3 2L

Here
. 2
N= :—2\/ D, Dy, qutznnmznzkmn ’
m n
) ofb? n’ 2 2
ax:Zqunm '—2+fx_—2’ ’ 0Lyzzzqmnn ;
m n a m m n
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32b En m+E=135,....

&_E‘.Z)(nz_nz) ni]’]:l,3,5,...;

Zqunng qun

O‘—.N

b

-2
I(BHSX +2Bl28x8y +B228y +B33'Y )dXdy .
0

Let us use the minimum total potential energy principle: minimize the functional (2.21)
as a function of Ao. This provides Ao¢=f(TxTy,Txy) for the postbuckling out-of-plane
displacement:

nla(— 2 bly
AOR— N—Txax—Tyay—Txyaxy+A0 > =0, (2.22)
8nca
Hence

Agl) ~0 A823) = izn\ﬁa(l“xax +Tyaty + TeyOxy - N)/(blp) .

Equation (2.22) has three roots; the first of them (Ao™") corresponds to plate deformation
without bending; and the other two roots, to a plate deformation with out-of-plane displacement.

From (2.22) it follows that if the stress resultants are less than critical (i.e., if Tx ox+Ty oy+Txy
: —%

Oxy < N ) then roots A¢*¥ are imaginary, and the plate can have a flat equilibrium shape only.

_x
If stress resultants exceed critical values (i.c., if Tx 0x+Ty ay+Txy otxy > N ) then roots Ae™?

are real and non-zero, which means that the plate can show a bending equilibrium shape.

Relations (2.18) - (2.20) should be complemented with a procedure describing
changeover of the buckling shapes. To achieve this, transform the energy functional (2.21)
taking into account formulas (2.22) for the out-of-plane displacement amplitude Ao:

42

By = _it_’(Tfﬁl +TyZB3 - 2T T, +T y[38)— (Tyox + Tyaty + Tyyyy ——N)z.(2.23)
2 Iob

Let us analyze variation of Do for three likely postbuckling states. The first state
corresponds to a flat plate and is associated with energy D0

0
o) =- 22121 + 363 ~2TTyB, + ThBy)
The second state corresponds to a bending equilibrium shape similar to the first natural

mode w and has the associated energy 38)

4 2 —

1 ab a
o) =~ ST T8 ~ 2Ty + Ty - o5 (s + Tyay + Ty =N° )™
2l
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The third state corresponds to a bending equilibrium shape similar to the second natural

C . assoc (2)
mode W' and has the associated energy 3

(2 ab 2 2 n'a’ 2 2 2) _ g2
Y6 =~ (T + Ty By ~ 2T Ty, + T Bs) - 0 (Tl + Tl + T o) - N 7).
2 21§

Figure 2.7 shows the variation of energy of every state in the course of proportional
loading with generalized stress resultants { T}T=T[T”XT’yT’xy]T. The real postbuckling equilibrium
shape depends on a loading level T. At an initial stage of loading, when T < T (T is the first
cigenvalue), the equation (2.22) produces the result Ag=0; consequently, the plate remains flat.
In further loading, when T > T", two equilibrium modes are possible: planar and curved, with a
surface shape similar to the first natural mode. We can assumec that the plate takes the
equilibrium mode which corresponds to minimum generalized stress resultant and a minimum
total potential energy. If T > T the real equilibrium mode is the one with a surface shape
similar to the first natural mode. At the bifurcation point, the total potential energies of two
equilibrium states, D¢'® and 3, must satisfy the condition Do@=,"; from this the following
equality appears:

*

N =0.

* *
Ty + Tyo, + Ty

It allows us to find the value T  and the stress resultant {TxTyTxy}" at which the
equilibrium shape changes over. Of course, the first of such change-overs occurs at a force equal
to the critical value. Determine the real equilibrium mode in the postbuckling stage at stress
resultants T>>T . We shall compare now the energy levels of the plate with

- the shape of the surface similar to the first natural mode and

- the shape of the surface similar to the second natural mode,

i.e., Do and Dp®. Refer to Fig. 2.7. The first equilibrium mode has energy 3¢ (Ty)
(line 2), and the second has energy Do® (T2) (line 3). If the accumulated energy levels are
identical Do'"=D,® and the load level T;,To<Ts then the first equilibrium mode takes place,
whereas the second one appears at T;, T>>Ts. The value Ts can be called the stress resultant of
secondary bifurcation. Use the condition Dy =D¢® to determine the value Ts. After simple
transformations we obtain the following equation:

= 5@ f* 2
TxYx'*'TyYy‘*'TKnyy:N -N 10/18) )
wherc
* 2 * 2 * 2 * 2 * 2 * 2
Yo=ay —a@VE/IP .y =a; —a@YE/IP L vy mag —a@ Y12 .

With the relation between stress resultants Tx, Ty, Txy known, it is an easy task to evaluate
cach of them. If a plate is rather thin and a load level T>Ts does not cause failure, a further
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change of the plate surface shape in the postbuckling stage is possible. To determine a level of
the next bifurcation, one must compare total potential energies % and 3% cte.

With the equilibrium shape known, we may determine the out-of-plane displacement
amplitude (2.22) and plate state characteristics (2.19) and (2.20) for cach point. Use mid-surface
strains (2.3) to find strains of every layer, (2.2), and layer stresses (o1, 02, T12) referred to layer
orthotropy axes:

= . . 2
o] = El[ (exp + zxx)(cos2 ©+Hyo sin’ ®) + (Eyo + zxy)(sm2 ®+Ujpcos” Q)+

+(¥ xy0 + ZUxy M- 1y2)sing coso | |

- . 2 .2
02 = Ea[ (exp +21x)(sin? @ + iy cos? 9) + (840 + 22y Mcos® ¢ + iy sin’ ) -

~(Yxy0 + ZAxyM1 = ppp)sing coso |,

112 = Gpal(eyo —&x0 +ZXy —ZXx)SIN20 + (¥ xy0 + ZXxy )OS 20]

where

' . = E
Xx :Aozzqmnlzm sind,x sind,y , Ei= 1 ’
—~ < I~ 1ok

2 . = E
Xy =802, 2 Amnrn SINAgX sindgy , EZ=]—_*2— ,
m n Hyalto)

E
Xxy = =280 AumnAmAn €OSApX COSALY |, Hy) :HZI‘E—Z ;
m n 1

Ei, Ea, Gi2, p21 are conventional elastic characteristics of a layer. The stresses in every
clementary layer should be compared with fracture stresses g,,55,1, t0 determine the plate

limiting state after buckling.
Let us study the postbuckling behavior and load-carrying capability of composite plates
for particular cases of compression, shear, and multiaxial load.

2.3.1. Compression
For this type of loadings (when Tyxy = 0 ) the natural mode is of form
w= sin(mnx /a)sin(nmy / b)

and relations (2.15), (2.18) - (2.20), (2.22) and (2.23) become significantly simpler.
A postbuckling out-of-plane displacement is described by the equation
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w=AgsSinApX sinAny .

For a plate with freely moving edges we have the following relations:
- mid-surface displacements

2
u= (—BITX _Aahl /8)x - ‘?—G‘l[(x%n _By,A2 /By )AL sin 24 x - Ay sin 2k pxcos 2x,,y] ,
(2.25)
A2
_ 20 42 0[ 2 2 1 B . .
v= (—BZTX _Alnd /8)y —ﬁ[(xn ~ByyA2, /Byy)hy sin2h,y - Ay cOs zxmxsmzxny] :
-the strains

£.0 = —Bi T, + A2(B,A% cos2h,x / By — A% cos24,y) /8

(2.26)
€40 = —BaTy + A5 (Byy A, cos2h,y /By, - A2 cos2Ap,X) /8 L ¥yy0 =0 ;
- stress resultants
N, =-T, - A3B (8By,) 'A%, cos2h,y |
(2.27)

N, =-AJB (8B;)) 7'M, cos2hpx , Ny =0 ;
- moments

M, = Ay DA% + DA% |sinA_x sinA,y ,
X o1~ m 12%n m n

M, = AO(D,zx%n +D22>3n)sinxmx SiNAny « My = —2AgDssh Ay COSA X COSA,Y -
Layer stresses could be determined using the following formulas:
o) = _ElTx[ B;(COSZ @+ sin’ w)— B(sin @ +py;cos’ 9) ]+
+E|A(2)|:(B,2A7;, cos2A,x/ By - sz cOos any) (cos2 Q+U sin? Q)+
+(B1 zlzm cos2A,y/By; - ﬁl cos 2me) (sin®o+ TEp) cos? @) ]/ 8+
+AOZE] {[kzm (cos2 P+ 1, sin? Q)+ 7»%1 (sin2 O+, cos? (p)]sin A XsinA,y -

~2h  An (1= 1y2)SINQCOSPCOS A XCOSA Y } ,

G, = —Eszlﬁl(Sinz ¢+ oy cos’ (P) - Bz(cosz ¢+ K sin” 0) ]+
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+E3A8[(Blzki cos 2, x / By, - &3 cos 2kny) (sin” @ + lay cos” @) +
+(B13?ﬁn cos2A,y /By — kzn cos 2kmx) (cos” @ + oy sin” @) ]/ 8 + (2.28)
+A02E2{[k‘7;n(sin2 ¢ + Wy cos® @) + A2 (cos? ¢ + Moy sin? (p)]sin ApX sinA,y+
A A (L~ )sing cos@ cosApx cosA,y }
1y, = Gn{ T, (B +B,)sin 20 + Ag[x;u + BB—”)cos 2h,y -

22

22
——él(l + By, / Byy)cos2A X ]sin 20 + Aoz[(k?1 - }»?“)sin 20 sinA X sinA,y -

“2A A, c082¢0 cosA,X cosA,y ] }

m''n

The plate out-of-plane displacement amplitude is of form

-1

2 2

A2 :%(Tx —-Tmn)( Z‘“B + }:’“Bj , (2.29)
An AnBir AnBxn

where T, = l%, DDy, k. . The total potential energy of the compression loaded

plate can be presented as follows:

b
90 = _%T)? Bl _ab(Tx _Tmn)z(

B A B
_ Ln . (2.30)

By A% By

Complement the relations (2.25) - (2.30) with a procedure for searching the real
equilibrium mode in postbuckling stage of loading. The total potential energy of compression of

a flat plate is 380) =-T7 B, ab/2 .

The total potential energy of compression of a curved plate with a surface shape similar
to the first and second natural modes will be of form

4 -1
o) = -Lp2 8 _apr, - 2t B
2 B,, a*, By
“ mO0

-1

(2) ab,_» (2)+2 B ng a4 B
= -=T7 B; - ab(T, - T?) - -
2 B», (mg +1)b By,
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and so on. At the initial stage of loadings, when T«<T ', a planc state of cquilibrium is
implemented, and the plate total potential energy is a function on %, With a load level To>T «
two equilibrium modes are likely: a planar mode and a curved mode with a surface shape
similar to the first natural mode. To identify the real equilibrium mode, compare compressive
stress resultants at identical levels of energy accumulation (35 = DY), i.c.,

-1
ab o) ab o) * 9 B )&4 B
-T§ B, =——T7 B, —ab(T, - T, )* - —n0 .
5 10 B, 5 By (Ty - Ty) (Bzz )"‘:nO B“]

The equality holds if Ty >T). Let us assume that the real equilibrium mode is the one
which corresponds to lower stress resultants. Consequently, at T.>T'x the plate takes the
equilibrium mode whose surface shape is similar to the first natural mode. Study now the plate
equilibrium mode for stress resultants Ty>>T x; total potential energics M and 9% should be
compared. For identical levels of accumulated energy (3Vy = D) compare the stress resultants
T and Ty; for this purpose we write the equation:

-1
4
_ﬁ’l‘lz Bl _ ab(Tl _T:)2( B _ )\'nO B ] -

2 By At, Bu
-1
ab 2 (2)+2 B ng 214 B
=-—T5 By —ab(T, - T,™) - "
2 By (my +1)*b® By

After simple transformations we can establish the load level Ts at which V% = 9, and
T, = T,. It is from the relation

Ts=(Tx- TP ) /(1 - fs) ,

-1

B 2%, Bj B nga® g

where f = ( 2 - 4
By Ao B/ | Ban (mg+D)*b* By

The stress resultant Ts is the secondary bifurcation stress resultant. If T ,<Ty<Ts the
plate is in the equilibrium mode with the surface shape similar to the first natural mode (since
Ti<T2 ), whereas if Tx>Ts then the plate is in the equilibrium mode with the surface shape
similar to the second natural mode (T;>T> in this case).

To exemplify determination of secondary bifurcation stress resultants, a plate may be
considered whose stiffnesses and geometric characteristics are given in [19]. For such a plate the
above procedure for identifying secondary bifurcation points gives Ts= 3.08T x. In [19], a finite
difference technique is employed to find the stress resultant Ts= 3.28T . A difference between
the results is 6.5%.

For a plate with fixed longitudinal edges we have the following relations describing the
displacements, strains, stress resultants, and stresses:
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u = (_B]Tx - A(%()\?m + Blz)\-?] /B]])/g)x -

m

2
_%[(xz ~BpAL /By OA sin 24 x - A, sin 24, x cos 2h,y| .

V= —A%Bﬂ»zny /8- “1\60 (A% - Blzlzm / Byy)A7! sin 24,y — A, cos 24, X sin 2Xny] :
e = —PT, + AZ(-A2By, / By, + BjsAZ cos2A ,x / By ~ A%, cos2A,y) /8 ,
Eyo = AZ(AE +BjoA% cos 2,y / By, - A2 cos2A,x)/8 | Yxyo =03

N, = -Tx - AZB(8BA,) tAZ cos2M,y .
Ny = -T,Bj2 /By — AJB(8B;) ' Ah cos 2 pmx . Ny =0

o, = —El’l“,((cos2 ©+ U sin” @) / By, + ElA(z)[a,(o(cos2 ¢+ U sin” ¢) +

+s:y0(sin2 ® + Ly, cos? ©) |/8+

+AOZE1 {[k?n(cos2 ¢+, sin? @) + A2 (sin? @ + pya cos? (p)] sinA  xsinA,y -

“2AmA,(1 —ppz)sin@cos@cos A, xcos A,y }

Gy = —Esz(cos2 @+ Ly sin? @) / By, + EzAg[&:xo(sin2 ¢+ Loy cos? (p) +
+6y0(C082 Q + oy sin2 ¢) {/8+

+A02E2{[7&2m(sin2 ¢+ Ky cos> Q)+ 7»%,(cos2 Q+ oy sin? (p)]sin ApX sinA,y+

+2h A (1 = ppp)sing@ cos@ cosApx cosA,y } ,

B
Y+ A3 (1 + B‘2

11 22

Ad[ 42, . B
- :Gu{ T, sin 20 / B, +T[ M

)cos 2A,y —

A2+ %) cos ZKmesin 20+ Agz [(7»2,, -2 )sin2¢ sinix sinA,y-
1

—2A A, cos2¢p cosApX COSA.Y ] } .

The amplitude of out-of-plane displacements of such plate is defined by the equation:

16 B,, A2 2 B A2 B
Ag—_——z Tx 1+'—]—2-—'2L _Tmn 2“ + ;1 ] .
A B A A, Biio AL By

n
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Compare theoretical results with test data from [20] dealing with postbuckling bchavior
of homogeneous orthotropic plates with the freely moving edges. Experimental plates had the
following characteristics:

plate N1: h=2.506-10" m, B/hB22=E«=28.06 GPa,
B/hB;1=Ey=5.3 GPa, B33/h=Gyy=2.15 GPa, B12/B22=11yx=0.33:
plate N2: E«=27.38 GPa, E;=8.06 GPa, Gxy=2.71 GPa, 1yx=0.33.

The dotted line in Fig. 2.8 shows the "relative load - relative displacement of loaded
edges” relation based on (2.25) for the first plate. Points are from experiments. Figure 2.9
provides stress distribution ox = Ny/h across the width of the plate N2, as found from (2.27)
(dotted line). Points here also show test data. From these plots it follows that the solution
satisfactorily describes behavior of buckled composite plates and may be used to estimate their
load-carrying capability.

Address a CFRP platc with thickness h=1.1-10° m, dimensions a=b=0.4 m and the
following mechanical characteristics of a layer: E=180 Gpa, E:=6.2 GPa, G12=5.0 GPa,
121=0.26, 81=(+1()OO, -450) MPa, 82=(+33, -100) MPa, 112=27 MPa. Determine limit loads
for various versions of reinforcement. The results of computation based on the Tsai criterion
from [14] are depicted in Fig. 2.10; here, the solid line is for the plate with freely moving
edges, whereas the dotted line, for the plate whose longitudinal edges do not displace
transversely. From Fig. 2.10 it follows that the maximum load-bearing capability is ensured by
plates with longitudinal stacking. When determining Tx, account was taken of the change in the
number of longitudinal half-waves in the course of loading. The load-carrying capacity of the
platc with fixed longitudinal edges is slightly higher than that of the plate with free edges.

Compare critical stress resultants T« with ultimate stress resultants Tx.

We have: T /Ty =104.3 (109.1) at ¢ = 0°,
Tx/T'x =9.29 (16.4) at @ = +45°.

The results between the brackets are for a plate with longitudinal edges not moving
laterally. These results cvidence that a buckled composite plate is able to carry considerable
loads.

Traditionally, the load-carrying capability of a stiffened thin-walled panel with a buckled

skin under compression is estimated by means of the reduction coefficient defined as the ratio of
b

a mean compressive stress resultant Ny = —I N,dy/b to a stress resultant Np at the
0

longitudinal edge of the skin: @g = Ng/ Np. Determination of reduction coefficients for metal

uniaxially stiffened panels is dealt with in a large number of works, for example [1 - 5]. When

analyzing aircraft structures, use is widely made of the notorious equation by von Karman [3]:

o = T, /N, .

Let us employ the relation (2.27) for stress resultants in order to establish the reduction
coefficient for compression loaded composite panels. We have
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*

1+By(na/mb)* /B, T, 2
Qe = 4 MRV a
3+By(na/mb)” /B;; Np 3+Bsyy(na/mb)” /By

(2.31)
N, = -Tx — A% A’m B/(8B22).

The monograph [1] by A.S.Vol'mir presents experimental values of the reduction
coefficients for traditional materials. These are shown by points in Fig. 2.11. The solid line
shows the theoretical relation for @g at a/b = 1, taking into account changes in the skin buckling
shape. One may see satisfactory coincidence of the results for metal panels at Ny, / T < 12 =+ 16.

However, application of the traditional reduction coefficient method to evaluation of load-
carrying capabilities of composite panels is not always justified. As is generally known, it
assumes that (1) a skin area with the width by = @gb is reduced to a stringer and (2) the likely
final condition of the panels is reached as a result of general or local buckling of the stringer or
its failure under compression. In this case, in accordance with the experience available, the skin
is normally assumed not to fail. Some composites (in particular, carbon fiber reinforced plastics
most widely utilized in thin-walled airframes) feature the brittle fracture at strains of 0.5 - 1.0%.
This implies the compression loaded composite panels becoming broken, as a rule, due to skin
failure from compression and bending that follows buckling. This is just the failure mode of the
plate in the example above. That issue is studied in more detail in 2.4 below.

2.3.2. Shear

Consider postbuckling behavior of an orthotropic plate under shear. In this case the
postbuckling out-of-planc displacement is governed by the general cquation (2.14), whereas

formulas (2.15) - (2.24) remained unchanged, taking into account that Tx = Ty = O,
C2=C3=38Tyx / 2.
The out-of-plane displacement amplitude is

Ag = 21y 2a(Tyy oty - N)/ (blo) - (2.32)

Stresses in layers are:
= A§[ - 2 2
G = El{—TxyBS(l — Hpp) sing cos@ +TO[ €x(cos” @ + Hyp sin” @) +

+gy(5in2 ¢+ MUy cos? ¢)+ ;xy(l — Hyp)sin@ cos@ ] } +

+A¢ZE; DY dpmn {[ A2 (cos? ¢ + 1y, sin? @) + A3 (sin” @ +
m n

+i1y, cos? @) ]sinkmx sinA,y — 24, A, (1 - Hyp)sin@ cos¢ cosA  x cosA.y } ,

2. Part 1. Postbuckling behavior of composite panels 25



2
= . Aol - .
G, = Ez{TxyBS(l—u?_l) sin @ COS(MTO[ ex(sm2(p+uz] cos? 0) +

+gy(cos2 @+ Loy sin2 ©) — ;Xy(l — Hap)sing cos ]+

— (2.33)

+AOZEZZZ qm[l?,, (sin2 O+ g cos? (p) + Kf](cos2 Q+
m n

+y; sin’ @) ]sinkmx sind,y + 22 A (1-py)sin@ cos@ cosA x cosh.y } ,

Adr- - -
T5 = Glz{—TxyBg cos2(p+?0[(sy —€x)sSIn2Q +7y,, cos'l(p]+

+A0zzzqm,,[(73n -2 )sin2¢ sink,x sink,y -

m n

~2X Ay OS2 cosA X cOSA, Y ] } .

Values ex, gy, ;xy, N, a,, and Iy have been defined carlier.

y

Address the stress state and load-carrying capacity of various commonly used plates out
of CFRP under identical loads Txy =11.5 kKN/m (Txy = 2T*xy(ir45°)). The plates with dimensions
a=b=0.4 m and thickness h=1.3_10" m had the following layups: ¢ = 0° (plate 1), +30° (plate
2), +45° (plate 3), +60° (plate 4), and 90°(plate S5). Figures 2.12 - 2.16 show distributions of
stress resultants (Nx, Ny, Nyy), moments (Mx, My, Myy) and stresses (o1, ©2, Ti2) over the
section x=x/a=05 of every plate. Stresses are presented for the layer whose mid-surface
coincides with the plate mid-surface. Identification numbers of lines arc identical to numbers of
the plates, i.c., the line 1 is for the plate with the longitudinal stacking (¢ = 0°) etc.

Of interest is dependence of the out-of-plane displacement amplitude on the applied load
for differing layups. Figure 2.17 provides a plot of the "relative stress resultant (Txy/T*xy) -
relative out-of-plane displacement (w/h)" relation for plates 1, 2, and 3. The load-carrying
capability of plates after buckling under shear substantially depends on layups and geometries.
Figure 2.18 shows Txy (xo) for three plates with the aspect ratio a/b=1, 2, 3. In the case of the

square plate the maximum load-carrying capability under shear is ensured by a plate with fiber
orientation angles ¢ = 45°; in the case of the plate with the aspect ratio a/b=2, the plate with
angles @ = 63°; in the cdse of the plate with the aspect ratio a/b=3, the plate with angles
@ = *67°. As well as under compression, composite plates after buckling under shear are
capable of carrying the load. Employing this property in thin-walled structures of flight vehicles
will make it possible to increase the effectiveness of composites. For the above plates the ratio

of ultimate critical stress resultants Txy /T*xy is (at ¢ = +45°):

- 12.1 for the square plate;
- 10.5 for the plate with the aspect ratio a/b = 2;
- 5.2 for the plate with the aspect ratio a/b = 3.

It is usual that load-carrying capabilitics of stiffened metal skin panels and spar webs
under shear are estimated by using the theory of complete and partial diagonal tension fields
[6,9]. Applicability of such an approach to composite structures was studied experimentally and
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theoretically by determining the load-carrying capability of a traditional thin-walled becam with
(1) steel flanges and battens and (2) the web out of CFRP with fiber orientation angles +45°, A
buckling mode shape of the web subjected to a shear load Q is shown in Fig. 2.4: it well
conforms to the first natural mode obtained by computation. Here, the failur¢ mode of the web
in the postbuckling stage is also shown.

The panel was analyzed by mcans of the diagonal field theory. In this casc the measured
slope of the wave, a=43°, in the final condition was in a good agreement with the theoretical
value, a=43.3°. Initiation of several parallel waves at plate corners was also observed. However,
failure of the web was not in correspondence with the model used in the diagonal field theory:
failure from tension along the line 1-2 in Fig. 2.4 was preceded by advent of cracks along the
line 0-2 in the vicinity of the point 2. This crack is caused by web bending along the hump of
the wave due to buckling. Thus, the load-carrying capability of a thin-walled beam with a web
out of a brittle composite (a typical example of which is the carbon fiber reinforced plastic)
cannot be predicted on the basis of the diagonal field theory. More dctailed information on web
stress state in the postbuckling stage is required; it cannot be derived from this theory.

2.3.3. Multiaxial load

Assume that a composite plate is buckled under axial (Tx) and shear (Tyy) stress
resultants. The plate stress-strain state is defined by relations (2.14) - (2.20), whereas the "stress
resultant - out-of-plane displacement amplitude" relation may be established with the help of
equation (2.22). Consider the loading model in which the stress resultants Tx and Txy are varied
in proportion to one parameter. Determine the load-carrying capability of a square plate out of
CFRP loaded with identical stress resultants Ty and Txy (Tx:Txy=1:1). Fibres arc laid at angles of
+45°. The computation predicts the breaking stress resultants Tx=¥xy=11.5 kN/m. Figure 2.19

shows stress distributions (o), 02, T12) in three sections with relative coordinates x =(0; 0.25;

0.5). Change the relation between stress resultants Tx and Tyy and generate the plate strength
surface for the multiaxial load. Figure 2.20(a) represents such a surface for the square CFRP
plate with angles ¢ = #45° Figure 2.20(b) shows the samc surface in relative coordinates

(Tx / Txo. T‘xy /T‘;yo ). where Txo, Txyo are breaking stress resultants for isolated action of

axial compression and shear, respectively. Points are from computation, and lines are
approximations thereof by means of the relation

— — 2
T +(_Txy] =1. (2.34)
Txo TxyO

Comparison of the results shows that the load-carrying capability of orthotropic
composite plates under multiaxial load may in many instances be estimated via the simplified
cquation (2.34).
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2 4. Stiffness and strength of panel with buckled skin

For analysis of postbuckling composite skin deformation, let us consider the behavior of
rectangular plate stiffened by mutually perpendicular ribs, Fig.2.1.

Each typical part of plate with adjoining parts of ribs in biaxial compression and shear
behave similar to the others retaining the rectilinearity of ribs and edges x=0, x=a4, y=0, y=b
of plate cell. Prior to buckling, the uniform flat stress state is realized in the plate with average
stresses p,=T/h, p,=T/h, 7=S/h. After buckling, the plate get the deflection w(x,y); the
distribution of membrane forces balancing external loads T,, T,, § becomes nonuniform. Let
us consider that the ribs are simply supported; the plate is orthotropic with symmetrical layup
arrangement. Postbuckling plate behavior is described by nonlinear differential equations of von
Karman type

L@+ L0ww) =0, Lin-L@W) =0, (2.35)

where ® is force function,

L1=Az:>.ji +24, A *A) i , Ay=ArAGf2,
ax4 ax28y2 ay4
L,=D,, 7 +2D il +D,, i s Dy=Dy,+2Dy;,

anct 38x23y2 ay*
L, PP PR FF
* ox%dy? oy*ox? Oxdy oxdy
) Fo *o

oy e N gy e el TN

(2.36)

, [Al=14,1=(B]"",

Plate midsurface strains are coupled with its displacements u(x, y), v(x,y), and deflection w(x,y)
by relationships (2.3), so that for relative mutual displacements of plate cell edges the following
is valid:

170u, 17, 20 , &0 1({aw)
e1=—; —a;dx=—; 11——2' 12-8—2_5(*—8;) dx =Const N
0 ol 9 x (2.37)
2
ex:—lf_aldyz—l Alzia_zg-PAzz_az_g—l(ﬂ) dy:Con‘S't .
by oy by dy? a2 2\ oy

We will give the approximate solution of the problem by using the assumption that the
postbuckling deflection pattern is close to that for buckling pattern and by solving the latter
from the equations (2.35) using Bubnov-Galerkin’s method.
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2.4.1. Biaxial compression

In this case we shall follow the solution scheme proposed by K. Marquerre [5] in application
to metal plates. According to (2.37), we consider the relative mutual displacements e,, e, as
given ones (by defining the absolute displacements of edges). The plate deflection we represent
as

WwiLy) =f,sin"—~sin ™Y by . mn=123.., (2.38)
a

that corresponds to all possible buckling modes of simply supported plate

_azw _82w -0. (23())

x=0,a E ‘x=0,a =0, w|y=0,b - ? |x=0,b -

Boundary conditions (2.39) are satisfied only in postbuckling phase of deforming at any
amplitude of deflection f,. Substituting equation (2.38) into first equation (2.35), the solution
of the latter can be expressed as

O (x,y)=- f2 CosZMTx, _bTm” (o 2nTy | (2.40)
2 2 32 b2 2A a an 2A11 b

Hence the loads in plate are expressed as

N, o9) =T, £ Cos 2";”
8a’Ay, (2.41)

2,2
Noy)=-T, =2 £2Cos2™™ | N_(x,5)=0.
2 xy
8b%4,,

Here T,, T, = averaged compressive plate loads in x and y directions. They should satisfy the
conditions

T ————fN (x,y)dy———f——dy Const,
(2.42)

=-— [N (x,y)dx=-—| ——dx=Const.
a{ () a{(_sz o

It is obvious that T,, T, are independent on coordinates x,y. Substituting equations (2.38),
(2.40) into conditions (2.37) together with simultaneous using the average laminate stresses p,,
p, result in relationships
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€. =— e - . 3
x Ex p'xy Ey (12 y Ey 'J'yx Ex 8b2 0
where
E :._1_ E :__1_ u _—11_2:52_ u :—.‘h:u 5 (2_44)
. Allh ¢ A22h ” All 322 ? A22 ¢ X

are laminate elastic moduli and Poisson ratios (average of lamina moduli and ratios [14]).
According to (2.36)

2
, B=B,|B,,~By,.

For f, determination we use the approximate solution of second equation (2.35) by
Bubnov-Galerkin’s method. According to it

mnx

ab
[ 1,00 -Ly(@w)]sin
00 a

sinnibydxdy =0

Substituting equations (2.38), (2.40) into this equation, for f,#0, the following relation can be
obtained after some transformations

2 2

D(m,nn)-p, —pyi—z +E(mn)fs =0, (2.45)

m_
4a2

where

2 2,2 4
Dmm="|p, " +2p," " .
ah| Mg

4
+2D3 +D
4 a2b2

22
2 4 4
m n
E — +E ]

b*)
T L
E(m,n) = 4 B

Critical state of the plate is determined from the condition of nontrivial solution f;#0 of
equation (2.45). For proportional loading p, =yp,, we can find

p; =minp (m,m)=p,(myny), p, =¥p;
mn

Px(m,n)=—D(m’") , (2.46)
m e
4a*  4b*

where m,, n, = numbers of half-waves in buckle pattern of plate cell. Fixing these numbers for
postbuckling plate deformation phase at p, > p.°, we can obtain from (2.45) the following
dependency of f,? on p,, p,
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P, —
=== -1==0D, (2.47)
E| p, E,
where
__ _ _ P, __»p,
P=px+Pya Xz—y Py=“—,
Py Py
D,=D(myny),  Eg=E(myny), (2.48)
4a? 4b?
0", 0 yo=— Do-
My o

Substituting equation (2.47) into equation (2.43) at m=m, n=n,, p = 1 result in two
relations between e,, e, and p,, p, similar to that for prebuckling deformation phase p <1,
when at f,=0, e, = ¢, e, = ¢, the usual relations (2. 36) of prebuckling plane stress state of
plate are valid

=%_u& Py P (2.49)

£
0 o 0 E "7,
So the postbuckling state of representative plate cell is fully determined including its deflections
and bending stress-strain state; the boundary conditions could be determined by mutual relative
displacements e,, e,, by external forces T,=ph, T,=ph or by their combinations e,, T, and e,
T..
The characteristic features of obtained solution are that the shear forces are equal to
zero including the forces on the edges of plate cell as well as the nonlinear variation of contour
tangent displacements along the edge. This result in inaccurate satisfaction of compatibility
conditions for displacements of the plate and ribs in the direction along rib, when these
conditions are satisfied integrally (the so-called edge slipping). Marquerre {S] has shown that
this has no appreciable effect on the SSS of plate and ribs and all the more on reduction

factors.
Reduction factors

As far as stiffness characteristics of buckled composite plate are concerned, let us consider the
most interesting case of uniaxial longitudinal compression of elongated plate with a> > b. We
will use usual nondimensional parameters of the theory of orthotropic plates

D bh
2|21 Y R P Ty (2.50)

b

2
a*\ Dy D, D,, “szuDzz

The solution of instability problem (2.46) for ¢ =0, 1/J/a =3 can be expressed by known
relations
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/D, D,, . . -
n0=1a moz—l—’ p;=——“_—22'<x’ Ky =2(1+ﬁ) (231)

Jo b2h

For the amplitude of postbuckling deflection f, from (2.47) we can obtain
E h
vAuDy b, (d+y) p;

Here an additional nondimensional stiffness parameter is introduced

Y_AllDll _322Dll _EyDll (253)

A22D22 B11D22 ExD22

influencing the postbuckling behavior of plate.
Substitution of equation (2.52) at p,=0 into relations (2.43) results in the following
relationships

x A

p.l3+y _2p_, .
~ & ) Exex(1+y)[l+2ex/ex

X - = * px = x ex)
E(l+y) g G+ | ) (2.54)
px 2VDIIID22 p; S px * *

ey ha— I‘Lyx__——_ 1-—1i= _p‘yx'_’ (ex =Px/Ex)
Ex (1+y) D, EXS

As we can see from the comparison of relations (2.54) and (2.49), the buckled skin behave like
non-buckled plate made of nonlinear elastic material exhibiting the reduced averaged elastic
modulus E°,=1/A°,;h=¢°, E, and corresponding reduced stiffness characteristic A*;;=A,/¢’,.
From equations (2.54) changing e, by ¢, we can obtain two equivalent expressions for secant
reduction factor ¢* =E'/E, <1

ot (1Y) =(1+Y)[1+2£;0/€xo
(1+7)

N G
3+y —2p_x
P,

’ (2.55)

where ¢ ‘=1 at p.=p.", e,=¢, and prior to buckling. In particular case of isotropic plate
when y =1, this expression can be transformed into the following one
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N
>

N

which corresponds to the solution [5]. Thus the unique parameter determining the distinctions
of reduction factors for orthotropic and isotropic plate is the nondimesional parameter 4. In
accordance with equation (2.53) for homogeneous and quasi-homogeneous plates, the
parameter v is also equal to unit because the following is valid

Eh* Eh’
Dy ==, Dy = .
12(1-p, 1) 12(1-p, 1,

Thus we obtain an important result, that such plates behave like the isotropic metal plate with
respect to the longitudinal stiffness.

In addition, we obtain from the second relation (2.54), that the Poisson ratio is also
reduced according to relationship

N s 2d * R
Py = P u,x—m(l—p,/p,)}:wiu,x—(l—q),)d, (2.57)

where the additional parameter d=,/D,,/D,, has appeared. In particular case of homogeneous

material, this parameter may be replaced by d=/EJE . For isotropic skin we can obtain

b =@ (p-14p. /p) =@ (1+p) - 1.

It is obvious that the value of reduced Poisson ratio can be expressed through the reduction
factor ¢,*, which in its turn depends upon the extent of critical state exceedance p /p,” or €,/€,,".

Fig. 2.21a shows the typical generalized dependence of p/p,” upon g/, obtained
from equation (2.54). These functions do not depend on parameter 8; they are piecewize
linear. The obtained solution gives the constant slopes of these curves in postbuckling region.
The tangent modulus E,'=1/A,/h=¢/E, and reduction factor

(pt=£xt=i dpx - 1+Y ((Ptl =0 5) (258)
x E E de, 3+y’ xly=1" "

are independent upon p/p,” or g/€,,

These results qualitatively correspond to the results of numerical solution of the problem
under consideration given by Stein [10]; they coincide for the initial phase of postbuckling
deforming. The dotted curve in Fig. 2.21 shows the particular case of isotropic plate, which
correspond to the relationship (2.59) reliably verified by tests (see [1], [5] and Fig. 2.11):
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The obtained solution is rather accurate in the region of "moderate postbuckling" when the
conditions e /e, <7, p/p. <4 are satisfied. If buckling state is exceeded more than in these
conditions, the value of ¢,° appreciably differs from the numerical result [10] and results of
calculation by equations (2.59). In accordance with equation (2.55), this value approaches

(1+y)/(3+Y)=9, as pJp,~= ,while the tests and equation (2.59) give considerably smaller

values ¢ *»0. The reason of this discrepancy is certainly the constant representation of plate
deflection mode (2.38), while the real mode modifies during the plate loading up to the
possible full change of wave pattern [1]. For quasi-homogeneous plates in this case, the
relationships (2.55), (2.58) can be changed by relationships (2.59). It should be noted that for
uniaxial loading, the introduction of elastic modulus reduction factor ¢, with respect to the
longitudinal stiffness of skin is the same as the introduction of effective skin width by von
Karman b,=¢,'b at the same E,, because E;'b=E.b,=¢(Eb).

In case of biaxial loading, after substituting equation (2.47) into equation (2.43) and
taking into account, that e, =&,,, €,=&,, we can go over the usual relations (2.49) with reduced
stiffness characteristics

R S . (2.60)
E' E E T E
where
s s 1 s s 1 s Als2
Ex XEx= : , Ey yEyz . N yx _——S—,
1lh A22 All (261)
s__A1s2_ sAlsl_ sE;
Mo = T T
A22 An x

and the secant reduction factors ¢, ¢,’, Poisson ratios u,’, p,’ can be expressed by the
following way

(ps= 1+? (PS= 1*?
T 3+y-2p” 7 143Y-2ylp

2y N s 1-9,
A (1_:] —gip, —=, (2.62)
d+(1+y)\ P d

)
 a+p\ p

The following notation are introduced in (2.62)

s _ s
By~ Py

Wy =0 =@k, ~(1-9;)d.
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-4t - - Y 4= - |y=2, lx:—a—, ly:£.
E g 2N E T m

The latter two depend on the directicn of loading (). Thus, as in case of uniaxial loading, the
buckled plate can be replaced by the stiffness-equivalent nonbuckled plate made of nonlinear
elastic material with characteristics (2.61),(2.62). The extent of critical state exceedance under

biaxial compression is characterized by the load index p becoming equal to unit in critical

state. In particular case of uniaxially loaded elongated plate, when y=y, d=d, p=p, | the

relations (2.62) result in the above mentioned relations (2.55), (2.57). The important inverse
statement is also true, that the general expressions (2.62) can be simply obtained from (2.55),

(2.57) by substituting p, y, d for p/p,”, v, d respectively. After that ¢ *, u,* can be obtained

from ¢ p,’ by the simple change of variables x-y, y-x, y-1fy, d~1/d. . Stain-stress

relations (2.60) in the obtained solution are piecewize linear with constant secant elastic
characteristics

—gE -t “‘_’Ex, Al =E'n,
6ex0 3+y
apx
1 1+Y t t
E!=¢'E = —LE, Ap=Ejh,
y (p),Ey aeyo 1+3Y 2y
apy
J 590 {2 I 1-¢,
T e, U aasp] Y 4 (2.63)
Oe 2d
t _ t yO_ t _ _ _ t
Pyx™ Ex apx “¥x p’yx 1+y Xp'yx a (px)d

E
t t t t
A12=_p'yAA11:_P'X)A2t2’ P'txyzp';x;yt'

P4

It should be noted that all stiffness matrixes of the buckled skin [Ay’], [Ay'], [By']l=[Ay]"
[B;1=[A']" can be uniquely determined by the introduced secant and tangent reduction
factors and other elastic characteristics of material (2.62), (2.63).

If numbers m,, n, are fixed, all the reduced stiffness characteristics depend on the loads

identically. The character of these functions is determined by the index p ; it is independent

on the load path. Since in accordance with equation (2.46) in general case m,, n, depend on
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nondimensional plate parameters «, 3, a/b and they discretely change as ¢ changes, the

relations (2.62), (2.63) behave similarly. The boundary of stability p=1 in p, p,-frame of

reference is the piecewize linear function; these pieces are created by the straight lines

corresponding to m,, n, = Const. For the constant values of p>1 , the similar piecewize

boundaries with discrete change of m,, n, and relations (2.62), (2.63) at corresponding values
of ¢ (see Fig. 2.22).

In each rectilinear piece of this boundary, the reduced plate stiffness characteristics are
constant and independent on the load direction. For the plate which form is close to the square
when m,, n, are independent on ¢ and equal to unit, we obtain unique relations of reduction

factors and loading index p for all possible load spectra. These relations (2.62), (2.63) are

the same for all load paths including the case of uniaxial compression in x or y directions.

2.4.2. Shear consideration in compact plates

The plate is considered to be "compact” if o parameter satisfies the inequality

0.5<a<2. (2.64)

If such plate is loaded by the loads T,, T,, S, its deflections at the moment of buckling can be
approximated by the expression [1}:

w=f,sin™* sin ") Y if, sin2™¥sin27Y (2.65)
a

a b

which satisfies the simply supported edge conditions (2.39). The solution of the first equation
(2.35) in this case is:

2 2

‘I’(X,)’)=‘Ify——~Tli- 2mx, . os 2™ +Cscos4ﬂx+
2 2 a b a (2.66)
+C,cos any +Cscos—cos3—zy +C6<:os§—n—xcos—b—y
a a
where
la21f2 1b21f2 1a21f2
- 32p% 4y u: G 3244 w6 32b% 4y (2.67)
1 b% 1
4”550 fz 5 25Af11f22’ 6 25Af11f22’
and
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b? a? a? b?
AS=0.01;—2A22+0.81;2-A“+0.18A3 , A;O.OlpA“+0.81§A22+0.18A3. (2.68)

The membrane forces in the plate are defined by the following expressions

2 2 2
Nx(x,y)=—Tx—C24n wszwy -C, 16n cos4ny —C59Tt cosﬂcos3ny C — osﬂcoslt—y,
b2 b b2 b b2 a b b2 a

2

4x? 2nx . 162 4nx . w?  mx _ 3my

N (@xy)=-T-C cos -C cos -C.—COS——COS—=—
y( Y) y TV o2 a 3,2 a 5,2 a b (2.69)
-C, 92 s 3™ cos ™Y Y.
a2 a b
2
N, (xy)=S~ C%sm——sin“y 3™ Gn 3™ in ™Y

b S g T

For the relative mutual displacements of plate edges, the following expressions are obtained:

e —-p—"—p. py+B e~ Dr M p"+a2
x xy e’ y"_'_ yx e?
e Zfz 22

The elastic moduli and Poisson ratios used in equations (2.70) are determined by equations
(2.44).
The plate average shear deformation can be expressed by the relationship

6= ;(Z !,z,,—i|y=0)+;(5|y:,,-§\x=0), (2.71)
where

— 1 a . la
* Iy:b:;fulrbdx’ u|y=0=;fu|y=0dx
0 (2.72)

b
_ l —
v|x=a=—fvly=ady’ v _0 b vly Ody

0

are the displacements u and v averaged over the plate edges.

For determination of functions u(x,y), v(x,y) the expressions (2.3), (2.49), (2.65), (2.69)
as well as relation vy xyo=ny/ nyh where ny=1/A33h =B,,/h.

After performing the integration (2.72), we substitute the result into equation (2.71)
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where

2 1
e=5f11fn 6(31 +8,-2)-(8,+8,72)| »

¢ =1+ 2a4* 1 18 1 L gl- 18a2 1 2 1 i
V25 p2 AER 25AER ™ T2 25p2AER 25 AEh
2bp 1 18 1 - 186 1 2 1

25 AER 25AER ™ 5 252 AER 25AER

g =1+—

For determination of f,, and f,, we will use the solution of the second equation (2.35) by
Bubnov-Galerkin’s method. Transformations yield two cubic equations with respect to desired
parameters

Cims 7 72 7 =\ a=7
1_76f11+csf11f22+f11(1_p)'41f22=0’ (2.74)
C7/;32+Cs;121f_22+f_22(16_45) ~47f,,=0,

where p s determined in accordance with equation (2.48) at my=n,=1 and

3 2 2 2
h _a_E +b_Ex)’ C.= h (i.*.i)’ K=a+2ﬁ+l’

KVDuDzz b* 7 a? . 25 K,/D,D o
- T 9 K - fu = fzz
T=—» 17T Na bhv D,D,,, f,= T’ fzz=7-

To

C,=

(2.75)

The stability boundary is determined from equation (2.74) assuming the smallness of
amplitudes f;,, f5;

_ 47 N
p.t——=1, (p.<4). (2.76)

The buckling mode is determined by expression.(2.65) in which

t‘
f22:4_—‘5‘f11’

and p,, T, Iis a critical combination of forces p, T

»

In the postbuckling region, when
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p=p.q, T-T.q, g2l (2.77)

*

the amplitudes f_u, f_22 are determined by the following way:

It follows from (2.74) that

7 _p-1+4@4-p)&
1 1 .. ’ (2.78)
16

T

where E=f“/f22 and 1 *<E<0.5.

*

The relationship for ¢ determination is obtained by using the equations (2.74)

_EQ -
g U ot (2.79)
P, (Cy-4E2C,-1)-48 T,

C
1+16822
C7

where Cg=————.
1-16&2

Consequently, the determined values of g and ]7121 correspond to each value of ¢ according

to (2.79) and (2.78) respectively. So the one-to-one relation between amplitudes f;,, f;; and p, T

is established. If g is given, the corresponding values of £, f;;, f;, can be obtained by iterations.

Expressions (2.70) can be reduced to the form (2.60), (2.61), which is valid for the
orthotropic plate with variable elastic parameters and Poisson ratios depending on extent of
critical state exceedance ¢ at proportional loading. The expressions (2.73) can be reduced to
the form:

T s
Yo=—» Go=®,Gy (2.80)
xy
By setting for buckled plate

€,=€,, €,~Ey, 6=yxy,

we obtain
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N
{1 o s s E
1:(——1]=Be , BpTHL—
M s
®, E,

Reduction factors ¢,%, ¢,’, ¢,’, Poisson ratios u,’, n,,’ are expressed from equations (2.81) by
the following way:

(ps_ 1 us _(ps M _azB (ps_ 1 us _us Ey (P; (ps_ ‘—C-
e — > X x A= S il A T¥ = - - o)
e M e B T BB T TR 1eByn B8

If $=0, relationships (2.82) are converted into relations (2.62) at my=n,=1.
Figure 2.23 shows the factors ¢,’, ¢,° versus g according to equation (2.82) at different

ratios p/T, T/p for the plate with a=1.
Tangent reduction factors in presence of shear are calculated numerically on the

increments of p, T at the reached level of critical state exceedance. They are shown in

Figure 2.24 for the plate with a=1.

2.4.3. Analysis of stiffened composite panels with the local skin buckling

It is known that the skin of thin-walled aerospace structures often buckle locally under load
which is much less than the general failure load. The nonlinear problem arises to determine
the general stress state and load-carrying capability of such structures with buckled skin.

For example, the static bending failure of wing box is usually caused by the general
instability of upper stringer-stiffened panel. After skin buckling, the panel is considered as the
structurally orthotropic panel with reduced skin elastic characteristics which depend on the load
level. These characteristics enter into the known expressions for stiffness [B], [D] of
structurally-orthotropic panel.

Thus, two different problems should be solved. First, the prebuckling stress state in the
structure with buckled skin is determined for the increased load (¢ parameter) by using some
method, e.g. engineering "beam" method or finite element method. The stress resultants
(membrane forces) are determined which nonlinearly depend on the external load (P/(1) in case
of wing box bending). These resultants are necessary to solve the general instability problem
for each ¢ value.
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The numerical method for thin-walled structural stress state determination in application
to the metal structurcs was reported by the authors on the Second World Congress on the
Computational Mechanics in Stuttgart (21]. With the help of special methods of reduction [22]
and special finite elements, the problem is reduced in essence to classical iteration methods of
variable elasticity parameters and the others which are applied for the stress analysis of the
structures made of nonlinear clastic materials. The specific character of composite skin is only
in the necessity of calculation of its secant reduced elastic characteristics in postbuckling phase
by using the relatively simple relationships obtained above. Thus, the method of analysis
proposed in paper [21] can be applied to the structures comprising composite elements.

The second problem of general instability of both separate structurally-orthotropic pancl
and cylindrical structure as the whole can be solved for each load level by the different method.
However, in contrast to the SSS-problem, the tangential stiffness should be used in stability
cquations, which characterize the relations between the increments of generalized forces and the
deformations of elements. This result in the necessity of calculation of above mentioned tangent
clastic characteristics for buckled composite skin, in particular according to relationships (2.63).
Naturally, further theoretical and experimental investigations are necessary to refine both secant
and tangential reduction factors for locally buckled composite elements . This specially concerns
with nonplanar, nonrectangular elements with complicated boundary conditions.

The panel in Fig. 2.1 is a regularly stiffened panel. Its stresses and strength may be
evaluated through the theory taking into account local skin buckling and the skin/stiffencr
interaction. Let us limit ourselves to the case of biaxial compression loading and involve the
approximate solution derived in 2.4.1 for a plate cell. The following notation will be utilized
hereinafter:

P; and P», the loads applied to a portion of the panel;

EF; and EF,, the longitudinal stiffness characteristics of uniaxially loaded stiffeners
(webs) for the x axis and the y axis, respectively.

The composite-skin stress resultants (Tx and Ty) and the stiffencr forces (N; and Na) are
unknown values depending on a ratio of stiffnesses of webs and the skin, the out-of-plane
deflection and stiffnesses of the skin at the postbuckling stage depending, in turn, on px = Tyx/h
and py = Ty/h, see (2.47) and (2.62).

The solution and the relations (2.38) - (2.45) for the plate keep their form but should be
complemented with skin/web deformation compatibility equations:

ex = Ny/EF,, ey = No/EF;

and panel portion equilibrium equations:

Py = 2N; + pxhb, P> = 2N + pyhb,
This produces:

L _ P Hb L _ P b
*“2eF, P"*2BF ° YT 2BE, 'YI2EF,

(2.83)

Relations (2.43), (2.45) and (2.83) are a closed system of 5 linear algebraic equations for
5 unknowns px, py, fo’, ¢x and ¢y. Equating the right-hand side expressions in (2.43) and (2.83),
we derive the following relations (depending on fo) for px and py:
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2.2 2 2
,  nfg n m
py = y B Sk Ey[kxb_2+ny azj’ (2.84)
where

E( P P, ]
= === k, +
P = Palge = 2EF, ¥ 2EF, 'Y/,

E,( P P j
y 2 1

= =Y k, + I 2.85

Py pY[fo=0 k[ZEFZ * " 2EF ™ (285

are thickness-average stresscs obtained for the case of a flat (not buckled) plate (i.e., fo=0);
additional symbols here are

E, hb E,ha
k, =1+ : k, =1+—2—, k =k.k, -1, .
2EF, y 2EF, y T Hab

Note that fo = 0 for a flat plate, so relations p, = py and py = py hold according to

(2.84). In addition, if stiffeners are "weak" (so that EF; — 0, EF> — 0) the relations (2.84) and
(2.85) provide

P ( Pl) Pz( sz
=pp=—t[T =L, = T, =-2| ,
Px = Px = hb b Py py ha a

i.e.,, we turn again to the case of specified skin loading not depending on fo, as

considered in 2.4.1.
Substituting px and py from (2.84) into (2.45) at fo # O results in the following equation

for the displacement amplitude:
4 4

, m , N , ’
D(m,n)—px%—z—pym+5(m,n)f02 =0, (2.45")

2 4 4 m2n2
where E’(m,n) = E(m,n) + E.k,— +E/k —+2Exuxy—7—7 .
32 at b* a’b

When determining critical state of the skin from (2.45') and (2.85) the relations (2.46)
hold; therefore, (2.45") is the basis for us to write for postbuckling of the skin:

2 2
1 m n Do
fé = £p; —2 +p, =% - D(,] ==2(p'-1), (2.86)
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where Eg = E(mo,no), P =Px*Py. Pr =5 ' Py =77 :
4a-D0 4b_D0

Now, stresses in the panel are determined completely: px and py

(Tx = pxh, Ty = pyh) arc described by (2.84), ¢y, ey are from (2.43), Nx(x.y), Ny(x.y)
are written in (2.41), forces in webs are N;=EF;ex =(P1 -pxhb)/2 and Ny=EFzey=(P2 -pyhb)/2,
and the strain field is from (2.2):

m(2)7t2
ex(X,y,2) = ANy (%,5) + ANy (x,y) + 2—5—w(x,y),
a

2.2
gy (x,y,2) = ApNy(x,y) + ApNy (x,y)+z"g’2t w(x,y), (2.87)

Yy (X,y,2) = ~22%W'(x,y)-
al

Here, w(x,y) are defined by the formula (2.38), and

w'(x,y) = fy cos coslbnl.
a

To evaluate the composite skin strength, we can assume that strains are uniform through
the thickness of a layer and equal to the layer midsurface strains. In this case the expressions
(2.87) define the plate layer strain components, with z being a coordinate of the midsurface of
a k-th layer. The plate is assumed to break down if at least one point in some layer reaches its
limiting state. Used as the limiting state criterion is the layer strength polynomial criterion
written with reference to the layer orthotropy axes:

2 g2 12
G, G0, 2 12 _
> 2 Ttz T, (2.88)
G O Gy T2

where T, 6], O;, 05, O, are respective ultimate stresses for shear, tension (+) and

compression (—) along and across fibers. Stresses {o}=[oc] 02 112]" in cach layer are described
as

{c}=[El{e}, (2.89)

where {E} = [81 €2 le]T = [R]{E}
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The panel strength is determined by proportionally increasing the loads Py and P, in
increments from an initial vector at which the skin is flat. In this process we find critical
(buckling) stresses px* and py* (from (2.46)) and their respective loads Pl* and P?_* (according
to (2.85)), thereafter the stress field, the failure loads E and l—’:, and the fracture point (by
using (2.88)).

At each load level a check is made of web strength:

N, /Ko, =Ee, /6, =1, N, /F,6y =Ee, /o, =1, (2.90)
where G,,G, are ultimate stresses of web materials.

Of particular interest is the case of uniaxial loading of axially stiffened long plate; here,
we should adopt P»=0 and EF; —» 0 and, following (2.84), assume that py = 0, py =0,
w = 0. In addition, relations (2.51) are valid for skin buckling. Upon some transformations the
equation (2.86) produces the following out-of-plane displacement amplitude formula that
generalizes (2.52):

fo E,h =4ﬁ\j k(1 +6) )[ﬁ—lj (2.91)

Dll (kx +kx’Y+2 p;

where px’ = E«P1/2k«EF,. Equation (2.91) becomes relation (2.52) when EF; — 0,
kx — © and px’ = px = Pi/hb. Similarly (with due account of (2.91)), the first relation in (2.84)
produces the mean skin stresses:

2 g2 2 *
., ® Eyfgm , ky +kyy+2 ‘
Py =P - X 02 0 _ pL X X px/px (2.92)
8k ,a ky +kgy+2

With this, the force in the longitudinal webs is

B[k, + kyy -2k - )3 /]

ky(ky +kyy +2) (299

ZNI = Pl - p)\hb =

If the panel load severity factor ( px’ / px* = P1/ P1* ) grows (and the skin deflection
increases, according to (2.91)), it is easily seen that skin/stiffener load distribution does change
so that a skin load decreases and a stiffener force increases. Asymptotically (as P/ Pi* — )
this leads to the values below:
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“ke(l+y)+2

3+y

XN, =P —
T (1Y) + 2

Pxw =P (2.94)

These same loads corresponding to the case of no skin buckling do not depend on the
panel load severity factor and are constant:

px = PiEx/2k:EF, , 2N = Pr/k« . (2.95)

It may be readily demonstrated that the same solution (2.92) - (2.94) can be derived by
employing the general method with reduction coefficients if we consider joint deformation of
two flat elements, of which one (the skin) has a variable modulus of elasticity depending on
stresses: Ex® = 0x°Ex. To do so, it suffices to transform equations (2.95) by substituting

Ex for E,® and
kx fOI‘ ka = 1+Exs hb / 2EF]

and, thereafter, to solve these equations by cither iterations or explicitly, through the use
of (2.55) for the reduction coefficient ¢x’.

If compression is biaxial, the panel stress field and skin/stiffener interaction are governed
not only by the nondimensional parameters introduced earlier but also by complementary
parameters kx > 1 and ky > 1 that characterize a ratio of stiffnesses of the skin and webs; also
significant become the skin layup sequence and the skin-layer/web strength limit ratio.

Let us demonstrate this with some examples.

A stiffened rectangular plate with the length of 300 mm and the 100-mm width is loaded
longitudinally by a compressive force P1. The graphite/epoxy skin has a (£ 45/90/0)s layup, ply
thickness of 0.11 mm, and the following ply characteristics:

E, = 12000 kg/sq.mm, E; = 850 kg/sq.mm, G2 = 650 kg/sq.mm,
w21 = 0.27, o, = 100 kg/sq.mm, &; = 100 kg/sq.mm, G, = 2.4 kg/sq.mm,
G, = 9.5 kg/sq.mm, 1), = 8 kg/sq.mm.

Web cross-sectional areas F; and F, are 5 sq.mm, the elasticity modulus E is equal to
18,000 kg/sq.mm, and strength limits G, and G, are equal to 100 kg/sq.mm.

Results of computations using the above relations are represented in Figs. 2.25 through
2.28. Middle curves in Figs. 2.25 and 2.26 show the influence of the panel load severity factor
on the postbuckling deflection relative amplitude fo/h and the reduction coefficient
¢x> = px/ exEx. Figure 2.27 represents distributions of Ny in the skin transverse direction at
various values of Pi/P1*; note that mo=3 and ne=1. Figure 2.28 depicts the effect of P1/Pi* on a
mean stress Ni/F; in longitudinal webs. The panel fails due to web failure in accordance with
the condition (2.90).

Also, Figs. 2.25, 2.26 and 2.28 demonstrate the calculated results for various web
stiffnesses — when F}(=F») is increased and decreased by a factor of 10 from the initial value 5
sq.mm (and the parameter ky varies from 1.23 to 24.55, respectively). In many cases the first to
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break are longitudinal webs; however, if we raise the web ultimate stress, the sequence of
failures in the skin and webs gets changed.

For instance, when Fi=F»=5 sqmm and G, =0, is increased from 100 to 120

y
kg/sq.mm (see Fig. 2.28) the first to break is the composite skin. The limiting state appears in
the 45-degree layer at z=0.385 mm at the plate center (x=a/2, y=b/2).
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3. Part 2. General model of joints in composite structures

3.1. Problem statement

When designing a composite structure, one should try to reduce the amount of joints and
attachment clements and to develop the structure as a unit. However, no one designer could
climinate joints, therefore the analysis and design of joints remain an important problem in the
process of introduction of composites in complex built-up airframes.

To attach composite structures to one another or to metal structures, perspectives are with
adhesive bond as the most suitable in view of the features of composite materials. These joints
can appropriately transfer the distributed loads between plates of intermediate thickness. In this
case the joint is a regular continual part, and analyses may be based on the theory of elasticity.

Low ultimate compressive stresses; the presence of weak polymer layers; low ultimate in-
plane shear stresses; all this notably reduces the load-bearing capability of the mechanical joints.
Boundary effects around holes and/or other discontinuities in materials may both result in local
interply failures and notably change the cffective stress concentration factors.

These problems are solved by using the computational models based on the finite-clement
method alone or in combination with other means (such as structural mechanics and the theory
of elasticity).

Section 3.2 presents an algorithm for analyzing adhesive bonds of various types. The
theory makes it possible to determine stresses Ox, Txy and oy for all components of the joint;
this is a necessary condition for estimating the strength, taking into account that the shear and
flatwise tension ultimate stresses of composite plates are comparable to those of the adhesive
layer.

The problem is solved by employing the Papkovich method that assumes the stress field
to be decomposed into a fundamental state and a correction. The fundamental solution is the one
satisfying the equilibrium equations and boundary conditions for the surface. If deformation
compatibility condition is not met, corrections are introduced, each of which corresponding to a
self-equilibrium stress field.

The corrections are determined by utilizing the strain energy; truc stresses in an elastic
body correspond to minimum strain energy.

Section 3.3 considers some models supporting the analysis of joints in stress
concentration zones and load application areas:

- a model for analyzing the mechanical joint,

- a model for analyzing adhesive joints near stress concentrations,

- an analytical model accounting for three-dimensionality of joints.

The first two model are applicable to study of two-dimensional joints and are employed
to evaluate adhesive and fastener joints around stress concentration arcas (in particular, to
analyze repairs with in-service damages).

The third model is for analyzing stresses and strength of joints that transfer great
concentrated loads. It can be used to study a wide range of joints in composite structures. The
model has been validated by comparing the computed values with the analytical, numerical and
experimental data available for some types of joints.
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The model and related computational techniques can be cmployed to determine stresscs
in very diverse joints and to reasonably sclect parameters of joints of composite clements in
structures.

3.2. Engineering analysis of commonly used adhesive joints in composite thin-walled
structures

Consideration is given to theoretical analysis of stresses in an adhesive joint of two
sheets. The sheets are assumed to be made of polymer filamentary composites. A feature of such
joints is that the shear strength and the flatwise tension ultimate stress of composites are
comparable with the same characteristics of the adhesive layer, therefore the analysts need stress
components in all structural elements — not only in the adhesive layer as the analysis of adhesive
bonds in metallic structures assumes.

Below, variational analysis is provided as a basis for determining stresses in the sheets
and the adhesive layer. Sheets are assumed to be loaded in tension, but the method may casily
be generalized to cover the problem of stress state of components under pressure.

3.2.1. Computational model of symmetric and asymmetrical adhesive joints

In real structures the width of sheets is much larger than the total thickness, therefore the
stress state may be analyzed by using a strip with a unit width (Fig. 3.1a) that is under plane
strain conditions.

At edges of the shects the elastic axis of the bar has jumps with magnitudes Ay;. The
latter is defined as a difference between the sheet neutral line and the neutral line of the section
including the adhesive joint. If the bar is loaded with a tensile force P, then the elastic axis
deforms and extra bending moments and transverse shear forces appear, added to the tensile
load. We should start with estimation of the forces/moments over the bar.

Evaluation of forces and moments over a bar cross-section

Consider tension of a continuous bar whose elastic axis looks like that in Fig. 3.1b.
Types of joints that could be transformed thereto are represented in Table 3.1.

To compute strains, bending moments and shear stress resultants, we can employ the
general equation (written in terms of initial parameters, see [1]) for the elastic line of a tension-
loaded and bent bar. The co-ordinate system origin and the positive directions of axes, strains
and stresses arc identified in Fig. 3.l1c. After the necessary transformations, we obtain the
following relations for computing the initial parameters:
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where

1 1
Aj= —thv;;+ ——thvyj.
1] K2j

Kij

B;=1+ thvyjthvaj,

2j

P
Kij= /=y - vij = Kijlj
(EJ)ij
i =12 j =L, R
(ﬁ) is a reduced stiffness of an i-j portion.
ij

Other components present in (3.1) are identified in Fig. 3.1.
Adopt the common x0y system and take into account that

YL =-Y.. _A_YL = -Ayp, MiL=-My, X = -X.

Then equations for bending moments and shear forces over the portions of the joint may
be written as follows:

Portion 1L (- £x<0):

Sh(K
ML (x) = (@oP + Qo)—(—Lx) + MyCh(K; x),
IL
QiL(x) = (@oP + Q¢ )Ch(K ;1 x) + MoK Sh(K ;). (3.2a)

Portion IR (0 <x < lir ):

Sh(K
ShiKigx) | (Ayo P+ MO)Ch(KIR x),

Mir(x) = ((Do P+ Qo) "
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Qg (x) = (0P + Q)Ch(K gx) + (AyoP + MK g Sh(K gx). (3.2b)

Thus, the joint is considered to be subdivided into portions that are between the cross
sections with free edges of the sheets. A loading pattern for the adhesive joint is shown in
Fig.3.2.

Idealized bar model for anafyzing the stresses

The real joint may be transformed into the model that is an idealized bar (Fig. 3.3a)
composed of a finite number of longitudinal clements that arc mutually bonded by webs. The
longitudinal elements (whose total cross-sectional area is equal to the cross-sectional area of the
original object) carry the normal stress g, only. A cross-sectional arca of an i-th longitudinal

elements is

8i -1 5ij
i\ 5 t%
- (St

where §;_| and §; are depths of adjacent webs.

The webs are assumed to be two-layered components (Fig. 3.3b):

- one of them carries the shear stresses only; its shear modulus is assumed to be equal to
the modulus of the real structural portion substituted;

- the second layer is a set of distributed struts that carry the normal stresses oy only; its
modulus of elasticity is assumed to be equal to the modulus Ey of the real structural portion
substituted.

A web depth is determined as

Oi =YY

where yi and yi.1 are co-ordinates of the center of gravity of adjacent longitudinal
elements in co-ordinate system adopted.

3.2.2. Hypothesis of local corrections

The solution of the adhesive joint stress problem relies upon the Papkovich method [2, 3]
that suggests the stress state being decomposed into the basic state and the correction state. The
basic solution is obtained by analyzing the joint as a tension-loaded and bent bar which has
discontinuity in the elastic line. The effects of free edges are allowed for by introducing
corrections that are some fast-fading exponential functions. In real adhesive joints the distances
between sections containing the free edges are rather long; this enables us to adopt the
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assumption of no interaction between the correction functions introduced in necighboring
sections.

The hypothesis of local corrections makes it possible to transform the original "adhesive
joint problem" into

- search for the basic solution for the adhesive joint as a whole and

- independent determination of corrections that are local for the portions.

The basic solution is obtained from the analysis of the adhesive joint as a tension-loaded
and bent bar which has discontinuity in the elastic line. The local correction stresses are
determined by solving the problem on gradual loading of a sheet through a semi-infinite bar
(with one end being free).

3.2.3. Analysis method

The Papkovich method assumes that the stress state is decomposed into the basic state
and the correction. The basic state is from the solution that satisfies the equilibrium equations
and boundary conditions over the surface; for the basic solution we use symbols
Oy, Txy» Oy-

If strain compatibility conditions are not met, the correction solutions are introduced; they
also satisfy the equilibrium equations and the surface boundary conditions. Each of the
correction functions corresponds to a self-equilibrium stress field. We denoted these functions by

using o', ‘ci')y c(yi), i=0, 1,2, ..., n

The true solution is written as
4 o | ) )
— o~ ! -7 1 -G !
< =0y E ‘ny—‘txy+2‘txy, Gy =Gy +p Oy .

By varying the correction functions, we can change the stress field while not violating
the equilibrium equations and boundary conditions.

When solving this problem, the basic solution is the one from the beam theory. It
provides a practically valuable solution for almost all span of the bar, and correction is only
necessary for a vicinity of sheet edges.

We may limit ourselves to introduction of one correction written as a product of two
functions, one depending on X, and the other one, on Y. Accuracy of such "truncated” solution
depends on qualities of the correction function.

Basic solution

Adopted as the basic solution is the solution provided by the beam theory with the flat
cross-section hypothesis. Equations (3.2) arc used to determine the loads M; and Qy applied to a
particular section of the tension-loaded bar; the beam theory suggests the following relations:
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yi is a distance from an i-th longitudinal element to the neutral axis,
E; is the modulus of the material to which the cross section is reduced.

Correction function

Within the analytical model adopted the correction part of normal stresses in any
longitudinal element is described as

o (xy) = x(x)ox where i=1, 2, .., M. (3.4)

Separate a bar clement that is at a distance X from the co-ordinate system origin, as
shown in Fig. 3.4a. The equilibrium equations are then employed to find the corrective shear

stress applied to an i-th web:

Txy,i = X'(x)rgy,i (3.5)

1
where ‘C?(y‘i = ch,kfk ; i=1, 2, ..., n-L.
k=1

The equilibrium equations for an infinitesimal element cut out of the i-th web (Fig. 3.4b)
produces the differential equation relating the normal Gy, stress to the shear Txy, stress:

56in + arxy,i =0.

oy ox

Substitute the function Txy; and take into account that oy,1=0; then integration provides
r” 0
oyi(xy) = x"(x) oyily) (3.6)

where cg,i(y) = c(;,’i +rgy,i(y -Yi) i=1, 2, 3, ..., n-1,
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cs(;,’i = Z‘rgy’@k is the stress in the vicinity of the i-th clement.
k=l

Thus, the stress tensor components for cach clement of the adhesive joint may be

established using

— 0
Oyxi = Oxi +X(x)0x,i >
= ’ 0
Txyi = Txyi TX (X)Txy,i 5 (3.7
0
Oyi = X"(X)Gy,i )

0

= = 0
where Gy; and Tyy; arc from formulas (3.3), and og,i . Tyy,i and oy,i(y) are from

(3.4), (3.5), and (3.6), respectively.

Selecting the correction function 0'?‘

The correction function should eliminate normal stress over free edges of the sheets, so it
is reasonable to assume that the function ci(y) is piecewise linear. The self-equilibrium

corrective function may be written as follows:

* upper sheet broken * lower sheet broken
o |Prrony i=1+k o |Putonyi i=1+k
Ox,i = cx,i = (3.8)
LBII’FO)IIYi i=k+1l+n Bp+ory; i=k+1l+n

Here, the index I is for the broken sheet, and II, for the continuous sheet.
Use the self-equilibrium conditions:

n n

ch,ifi =0 > Yicg,ifi =0 3.9
i=1 i=1
to derive

_ (FJy - S1Sn)Bs +(SiIn - IiSn)er
St - Fuln

Bu
(3.10a)
_ ~(FiSy - StFir)B; = (SiSu - J(Fy e
St - Fuln

g
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where F =) f, ; Fp=>f:
k n-k
S; = Zyifi ; Sy = Z)’ifi ;
k n-k

JI:ZYiZfi ; J11=Zyi2fi ,
n-k

fi the area of the i-th element,

yi the distance from the i-th element to the neutral axis,

k the total number of longitudinal elements in the broken sheet,
n the total number of longitudinal elements.

In a section x= X, at the end face of the broken sheet (index I) the normal stress o, is

zero, so the following equality holds:
Oyi t+ X(xn)c?c,i =0.

Substituting the stresses from (3.3) and (3.8), obtain

P M., (x
b ¢ - i @yi +x(xy XB1 +01yi) = 0.
Assuming
x(xy) =1, (3.11)

we can derive the following relations for coefficients By and o :

P M,(x
BI:—\PiT::’ m]:lPl Z§ n).

(3.10b)

With the function cg(y) determined, formulas (3.5) and (3.6) are utilized to determine

the corrective stress functions rﬂy and cg. Figure 3.5 graphically represents the components of

the basic and correction functions in the section where the free end is.
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Determining the function X(X)

With the function x(x) found, the relations (3.8) and (3.3) - (3.6) are employed to

compute all stress components applied in elements of the adhesive joint.
The sought-for function x(x) is determined from the minimal potential strain energy

condition; the energy may be written in the form,

=

I
UszodV:U,+U2+U3=5£ >

i=1

(Gx,i)zf‘ " S (Txy,i)zﬁi +n_l (oy,i)zéi dx
Ex' 1 G Ey,i

ol i XY,l i=1

where Uj, Uz and Us are strain energies, respectively, of longitudinal elements, shear-
carrying webs, and struts transferring normal stresses oy; 1 is the length of the structure.

In longitudinal elements, all stresses, except for oy, are zero; Gx stress is described by
(3.7); with this, the potential energy of all longitudinal elements is

1 0 )2 ]
1 n (Gx'i +x0x'i) fi 1 2
U, =— dx = —|{Ag + 2A;x + Ay |dx (3.12)
=5 j g > J (Ao +2a, )
where A :Zn:Lsz. , A :zn:Lf-E oY A:iLf(oo-)z.
0 - Ex,i [ 8 i _r Ex,i P X0 X1 _r Ex,i 1 Xl

Substitute in the equation for A; the value of o,; from (3.3); taking into account

relations (3.9), we have

A ——B—Zn:fco +—M—zn:f . =0
1 Efﬁizl ivx,i Ef:fi=1 iYi X,1i .

Thus, the formula for strain energy of longitudinal elements becomes

0 =L f(mo + ax)x
0

In the i-th shear-carrying web the only stress component is shear, eq. (3.7). Strain energy
of all shear-carrying webs is

1
1 , ,
U, = Ej’[BO +2B13/Qy + Bx")?] dx. (3.13)
0
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—\2
n-15;1Sz 1 B n-1 g. 2

22 1 ) ; ‘:TZ lltgy.i : B:ZG l.('cgy.i) .
(Jz) =1 Oxy.i =1 Oxy.i i=1 Ixy.i

For the i-th web transferring the normal stress oy the strain energy is expressed by

n-1 " 2 63
(X) I(ng‘Txyx) ds| dx
i=1 ©Y.1 {0

where s=y-yi and &i=yit1-Yi -

After conducting the necessary manipulations, we arrive at the final expression for strain

energy of a web transferring the normal stresses Oy:

2 (3.14)

where C = E—S——[g(tm&i)z —cg,i(tgy'i6i)+(cg,i)2].

Yt

The potential energy of the entire joint is a sum of potential encrgies of all elements as

described by (3.12), (3.13), and (3.14).
After summation we obtain the fo
that depends on the % functlon and its derivatives:

llowing expression for potential energy as a functional

U=U,+U,+U, ——jR(xx x5 x)dx (3.15)

where R(x,x’ x"s x) Ay +Ax +B, +2Bx’ +B(x) +C(x")

For a function x(x) to deliver minimum to the functional (3.15), the Euler variational

equation must be satisfied:

@5_9_(9&)+£
oy dx\ox'

=0.

dR
— 3.16
(axﬂ) ( )

After the necessary transformations, we obtain the differential cquation for the unknown

x(x) function:
cyV -By"+ Ay = B,Q} - 3.17)

Coefficients A, B, By, and C are described by (3.12), (3.13), and (3.14).
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Equation (3.17) is a lincar differential equation with constant cocfficients. Its solution can
be presented as

4
x(x) = D, Di0;() + 9p(x), (3.18)

i=1

where Dj are arbitrary constants,
@;(x) are solutions to the homogeneous equation for (3.17),

@o(x) is a particular solution to the inhomogeneous equation.

To find ¢i(x), we should determine roots of the characteristic equation which is
biquadratic in the casc under consideration:

Cr* -Br* + A =0. (3.19)
If roots r; of (3.19) are real and distinct, the solutions are

@i(x) = exp (rj X) . (3.20)
If there exist repeated roots — for example, if = rz, — then

@i(x) = exp (nx) , @A) = X exp (1x) . (3.21)

If eq. (3.19) has complex roots, these could be conjugate pairs — for example, ) + r2i)
and *(r1 - r2i). The corresponding solutions appear:

@1(x) = cos (r2x) exp (nx) and  @2(x) = sin (rax) exp (nx) . (3.22)
For the shear force Qy(x) established in accordance with (3.2) we have the particular
solution:

@o(x) = myi Ch(K ix) + m2iSh(Kpix) , i=L. R, (3.23)
B,x K2 (Mg + AyoP) B, [KiM
where m g = 1R4 IR0 > 0 . my = y 1ILBIL 20
CrKir —~ BrKir + Ar C KiL —BLKiL + AL
BrKg(@oP+ Qo) . B, .K;L(9oP + Qo)

mir > my =

- 4 2
CrKir — BrKir + Ar C KiL - B K{L +AL

The four arbitrary constants Dj are determined from boundary conditions.
Two boundary conditions are implied by the local correction hypothesis: the function and
its derivative are limited at a distance from the sheet free end,

X(x)‘x=L->oo B X'(")lx:bw =0. (3.24)
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The other two boundary conditions are written for the section where the shect free end is
located. Normal stresses at the sheet free end are zero according to (3.4); this produces

x(x0)=1. (3.25)

By assuming a shear stress resultant at the sheet free end to be approximately zcro,
obtain:

Y Tyyilxy) 8, =0,

i
Here, summation covers all webs of the free end and the adhesive layer.

Utilize relations (3.7), (3.8), and (3.2) to re-write the boundary condition:

Zgz,iSi

_Qya) 5 , (3.26)
J Ztgy,iai

X' (%) =

3.2.4. Computational examination of adhesive joints

Stresses in adhesive joint of a tension-loaded sheet with symmetric doublers made of the
same material

A schematic of the joint is depicted in Fig. 3.6a; initial data for analyses are reported In
Table 3.2. In this case we have Ay = Ay = Aygr = 0 and, therefore, yo = 9o = Mo = Qo =0.
The correction (see Fig. 3.6a) is defined by formulas (3.8) and (3.10):

for doublers;

a7 F
_I_ for the sheet.

~o i} o

M

Relevant expressions are utilized to evaluate 1%y and o, and to determine the
coefficients A, B, and C of the differential equation (3.17). Owing to symmetry of the structure,

consideration is given to an analytical model comprising the doubler and a half-thickness sheet,
which are each modeled by 11 longitudinal elements (strips).

Differential equations for the x(x) function is of the form

0.576 ¥V - 0.769 ¥ + 0.214 x= 0 .
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The solution to this equation (taking into account limitedness of the x(x) function and its
derivative at a distance from the doubler free end) may be writien as

x(x) = D2 exp(-rix) + D4 exp (-r2x).

Use the boundary conditions (3.25) and (3.26) to establish the remaining arbitrary
constants:

n

r
D2: 2 ; D=- .
-0 n-n

Thus, the solution to the differential equation appears:
x(x) = -1.852 exp (-0.969x) + 2.852 exp (-0.629x) .

Figure 3.6b represents plots of normal (oy) and shear stresses in the adhesive layer;
variation of the stresses over the vertical extent of the section where the maximum stresses exist
is also shown — Fig. 3.6c.

The differential equation (3.17) may by transition to a limiting state be transformed to
the previously known simplified solution that is utilized in many articles devoted to behavior of
adhesive joints.

' Assume that the sheets have a rather high shear stiffness (Gxy1 = Gxy1 —> ) and that no
displacement is allowed through the vertical extent of the joint (for example, if there is a rigid
clamp): Ey1 = Ey1 = Eya — .

By transition to a limiting state we obtain the well-known equation:

- A1 =0, (3.27)

Gxya+4) E. b

—_ A = ——
d,ExniFn EgF

where Kz =

The solution to this equation is of the form

PA
+ A

T = exp(—Ax).

Figure 3.6d demonstrates the function Txy,a, as computed by means of (3.27) (line I); for
comparison’s sake, a curve taking into account the real propertics of the materials is also
depicted — line III. The line II in Fig. 3.6d corresponds to an analysis in which
Gyy.1=Gxy1 = © , Eyi = Eyi1 & ©, and the adhesive layer has its real properties.

The allowance for real properties of all elements in the adhesive joint does notably
change both the profile shape and magnitude of shear stresses; there appears the possibility to
predict ultimate flatwise tensile stresses for both the adhesive layer and the sheets.
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Sheet with a one-sided patch

A schematic of the joint is demonstrated in Fig. 3.7, and Table 3.3 provides the initial
data for calculation. The model of the joint contains 11 strips in the sheet and 11 strips in the
patch.

Having chosen a corrective function in accordance with (3.8), we determine functions
Toxy'i and Goyli and compute coefficients A, B, C, By of the differential equation (3.17). The
differential equation is of the form

0.0428 ¥'¥ - 0.2066 " + 0.1955 x = Q'yB, .

Roots of the characteristic equation (3.19) are real, and the solution is provided by the
relation (3.18).

Let the free end of the patch be at the section X=xXa; having satisfied the boundary
conditions (3.24) - (3.26) we write the solution:

x(x) = D2 explari(x-xa)] + D4 explara(x-xs)] + m; ChKix + m2 ShKix , (3.28)

(r2 - a&) - (r2m1 - amzKl) Ch(K;x,) - (r2m2 - (llel) Sh(K;x,)
where D, = ;
=1

(rl —ao"?,)—(rlml —(lmzKl) Ch(len)—(rlmz —oclel) Sh(Kx,)

D4:‘ N
Ip —n

a=-1 for x > Xnp,
a=1 for X < X,
r; and r2 are roots of the characteristic equation (3.19),

Q (x ) 6'§Z.i

_BlKlz(AYOP+Mo) ) _BlKl((PoP+Q0) ) y\in Z i

= 4 2 m, = - @®= -
CK] _BKI +A

1
CK{ -BK? +A T, 381l
i

Summation covers the webs at the free end and the adhesive layer.

The results are represented in Fig. 3.7:

- variation of normal (Gy,) and shear (Txy,a) stresses in the adhesive layer around the free
end of the patch (Fig. 3.7b) and

- distributions of stresses Txy and Gy throughout the vertical extent of the stack in the
sections where the stresses reach their maximum values (Fig. 3.7¢).

The work [4] solves this problem via a continual model and the variational principle of
the theory of elasticity. Computation results are almost coincident. Figure 3.7d represents
differences between stresses in the adhesive layer:
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('c xy.a)k - (Txy»a)d

(Txy,a K

At xy.a =

the index k corresponding to the continual model and the index d, to the discrete
model.

The present model with an adequate total number of discrete elements provides a
practically sufficient accuracy of determining stresses in adhesive bonds.

Choosing the appropriate total number of discrete elements in model of joint

When establishing a model of a joint, the question appears, how many discrete elements
do we need to model the sheets bonded with adhesives?

To clarify the influence of the discretization degrec on the analysis accuracy, the
maximum stresses in an adhesive joint of sheets were computed for various numbers of discrete
clements.

The joint discussed in the previous example was analyzed by using models in which
every sheet was modeled by 4, 6, 8, 12, and 15 strips. Figure 3.8 shows difference of stresses in

the continual model and the discrete model in which the total number of discrete clements is i:

Ny - Ngi
Nk
where Ng; is a value for the discrete model in which the total number of discrete

clements 1s i,
Ny is the value for the continual model.

AN(i) = 100 % ,

The graphical representation evidences that the model with an insufficient total number of
longitudinal elements has greater maximum stresses as compared with the data from the
continual model; the higher the discretization degree, the less the difference in stresses.

Replacing the sheet with 6 to 8 discrete elements ensurcs a practically sufficient accuracy
of the analysis based on the discrete model.

Inserted adhesive joint of a composite sheet and an aluminum sheet

Consider a symmetric joint of two sheets (Fig. 3.9). Initial data may be seen in
Table 3.4.
Due to the symmelry we have Ayo = Ayx = Ay, =0 and yo = @o=Mo = Qo = 0. The

self-equilibrium correction from (3.8) and (3.10) can be written as
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1 for the composite sheet
G?(,i = (329)

- for the aluminum sheet

Here, Fp is the area of the composite portion in the joint and Fy is the arca of the
aluminum portion in the joint.

Equations (3.5) and (3.6) are utilized to compute other components of the correction, and
cquations (3.12) - (3.14) are employed to calculate coefficients A, B, and C. The result is the
following differential equation for determining the function x(x):

«Y - 2x0.515 " +0.0543 = 0.

Roots of the characteristic cquation are real: r1=-12=0.987, r3=-14=0.237.
The general solution to the differential equation looks like this:

x(x) = D1 Ch(rix) + D2 Sh(nx) + D3 Ch(r2x) + Da Sh(r:x) .
D; are arbitrary constants Lo be determined on the basis of boundary conditions.

Boundary values of the function x(x) and its derivative are established by nullifying the
stresses Ox and Txy at the free edge of the composite sheet (x=-1) and the aluminum sheet (x=1):

P
X(“l):‘\l’1§ , x'-D=0;
(3.30)
H P
D=wp & = M) =0.
W) = vn - XD

After substitution of values of the function and its derivative into boundary conditions we
obtain the following expressions for the constants:

P FII Shv
D, =—=(—‘w—w) 2

2E\FL Shv, Chv; — -L Shvy Chvy
)
P ( Fy Chv
D> ZE(—FLWH —\UI) r2
I Shv; Chv, - - Shvy Chvy
1Y)
P ( Fi r Shv
D3=——2§(—I§I—WH—W1];L rl
1 2 Shv, Chvy - - Shv; Chvy
)
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P FH 19} Cth
D““a;(?“’“““]r r
I 2 Shv, Chv, — —-Shvy Chv,

)

where vi=r1l, v2=ral .

Having the x(x) function determined from equations (3.7), all components of the stress
tensor can be found. Figure 3.9 shows profiles of shear and normal stresses in the adhesive layer
for joints with differing lengths.

Increasing the length of an adhesive joint is feasible to a certain limit only, since stresses
in adhesive do not decrease in too a long joint.

If stiffnesses of sheets in a joint differ (EiF; # EnFn) then stresses in the adhesive at
opposite free edges also differ; the higher the stiffness of an element, the higher the maximum
stress in adhesive at the end of the element.

Inserted multilayered adhesive joint

The method developed for analyzing the simple inserted adhesive joint is well applicable
to analysis of the multilayered adhesive joint.

Consider stresses in a multilayered symmetric joint of sheets made from composites and
aluminum. A schematic of the joint is demonstrated in Fig. 3.10a; Table 3.5 provides initial data
for calculation.

The model includes 24 strips, a corrective function is adopted in accordance with (3.29).
Figure 3.10b represents Stresses o’ ‘coxy and coy. Further, equations (3.12) - (3.14) are involved
to determine coefficients A, B, and C.

The differential equation for the function %(x) in this example is of the form

yV - 2.0.0782 %" +0.0152 = 0.

Roots of the characteristic equation are a complex conjugate pair, +(r; * r2i); here,
11=0.318, r=0.15.

The solution to the differential equation is
x(x) = D1Ch(r1x) Cos(rzx) + D2Sh(rix) Cos(r2x) + D;Ch(rix) Sh(rx) + D4Sh(rix) Sin(r2x).

Boundary conditions for establishing the arbitrary constants coincide with relations
(3.30); introducing therein the function x(X) and its derivative, we obtain formulas for
establishing the arbitrary constants.

Shown in Figure 3.10c is variation of shear stresses along the most severely loaded
adhesive layer (web 35); Fig. 3.10d presents distribution of shear stresses Txy over the vertical
extent of the section where the stresses are at maximum. For comparison, these plots are having
the profiles (refer to dashed lines) of stresses in the adhesive joint with the same sheets but
made as a "simple inserted joint.”
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The inserted multilayered adhesive joints cnables decreasing the stress level for clements
in adhesive joints, thus shortening the joint.

Distribution of stress resultants between the adhesive layers in multilayered adhesive
joints is not uniform; the present analysis method makes it possible to determine real stress
ficlds in adhesive joints.

Adhesive lap joint with two identical sheets

A lap joint may be modeled by a bar whose clastic axis has discontinuity at sheet ends.
Consider an adhesive joint of two composite sheets; a schematic of the joint is demonstrated in
Fig. 3.11a, and Table 3.6 provides initial data for calculation.

Locate the co-ordinate system origin at the central point of the lap arca. Assume Ayo=0.
Equations (3.1) may be utilized to determine initial parameters; thereafter we can compute
strains and forces/moments in the joint (Fig. 3.11b).

The analytical model incorporates 6 longitudinal elements for cach sheet. Having
determined the correction functions and coefficients A, B, C, and By, we arrive at the following
differential equation for determining the function x(x):

1.246 'V - 15.497 y" +3.866 y = 0.009 Sh(0.0285x) .

The joint is asymmetric, therefore Y(x) = -X(-X); sO the general solution to the equation
may be written as

v(x) = D2 Sh(rix) + D Sh(r2x) + Do Sh(Kix) .

Arbitrary constants D2 and D, are determined on the basis of boundary conditions for the
free cnd (x=l;) that correspond to relations (3.25) and (3.26).

Figurc 3.11 represents diagrams of shear and normal stresses in adhesive joints with
various lengths.

If an overlap area is short, the total bond area is insufficient, and shear stress is high
throughout; increasing the overlap length decreases the shear stress, and stress distribution
becomes nonuniform, with stresses showing peaks near the free ends. Increasing further the
overlap length makes the shear/normal stress pcaks get notably lower, thercafter intensity of
reduction of maximum stresses in the adhesive layer gets slower; lastly, in rather long overlap
areas, the maximum stresses do rot always depend on the overlap area length.

Adhesive lap joint with two arbitrary sheets

Assume that the overlap area length enables employing the local correction hypothesis.

To determine the basic solution, the structure may be modeled by a bar whose elastic
axis has two discontinuity points: the lefti-hand end (x = -xL) and the right-hand end (x = XR)
(Fig. 3.12).

Making use of (3.1) and (3.2), we determine initial parameters and forces/moments
applied to the ends. Thereafter, two correction functions are introduced and, in accordance with
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the local correction hypothesis, the problem is solved twice — for left-hand and right-hand parts
in scparation.

After the relevant transformations, we¢ obtain two independent differential equations for
left-hand and right-hand parts of the joint:

Co XLW -BLy'L+ALXL= Qly_L BiL, XL <x<0;
Crr'"’ -BrA'R+ AR AR = Q'yr Bir, 0<X<XR.- (3.31)

Solutions to these equations with boundary conditions (3.24) - (3.26) arc provided by
(3.28). With functions XL and yr established, the corresponding relations are employed to
determine stress components for any point in the joint.

Considered as an illustration may be an overlap joint of sheets made from carbon fiber
reinforced plastic (CFRP) and aluminum. Data necessary for the analysis are in Table 3.7.

Determine co-ordinates of the neutral layer for each portion of the structure and establish
the jumps of the elastic axis:

Ay, = 08535 M , Ay, = 0, Ayg = 0.7465.

Equations (3.1) and (3.2) are source of initial parameters and end forces/moments
necessary for subsequent calculations. Thereafter the correction Stresses arc computed for left-
hand and right-hand parts of the joint in separation.

Figure 3.12 shows variation of normal and shear stresses in the adhesive layer, as well as
diagrams of stresses Ox, Oy and Txy for certain cross sections.

If an adhesive joint incorporates several sections with free ends of sheets, each section
introduces a correction function. In a general case we should allow for interaction of the
correction solutions; this noticeably complicates the overall problem. In certain cases the
situation may be simplified by using the local correction hypothesis. The latter is valid in the
case that a distance ALjix1 between neighboring sections with free ends is rather long; in
practice the "interaction” of the ends can be neglected if

5
ALi,i+l = Xj+l ~ X 2 . (332)

Iinin

where I'min is the minimum root of the characteristic equation (3.19).
The relation (3.32) is also a criterion for specifying a rational overlap length in an
adhesive joint.
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3.3. Finite-element model for analyzing the irregular adhesive and mechanical joints between
composite parts

In recent years a considerable progress has been achieved in computing technologics and
analysis methods. However, the varicty of joints is very large due to differences in structural
shapes and manufacturing processes; therefore the immediate analysis by means of
clasticity/plasticity theories and fracture mechanics is a notable difficulty. So the effective
method for analyzing the joints is to combine these methods and the engineering methods of
structural mechanics.

The present model (Fig. 3.13) includes

a) an analytical model of discrete joints,

b) an analytical model of adhesive joints, and

¢) an analytical model of three-dimensional joints.

The first two models are for estimating the two-dimensional objects and may be used to
analyze thin-walled wing/fuselage components at the design stage, for estimating the repair after
in-service damage, or when bonding the reinforcement doublers (whose edges are attached by
bolts or metal needles). The bolt force allocation derived may be utilized in boundary conditions
for analyzing the most scverely loaded area by means of the three-dimensional model (sec item
¢) above). In addition, the three-dimensional model can be employed independently, to analyze
stress-strain states (and estimate the strength) of composite joints transferring large concentrated
forces.

3.3.1. Joints with discrete bonds

Resolving a structure into components results in appearance of additional parts, an
increase in weight, and a decrease in structure service life due to tendency to failure from
fatigue under variable loads. The aircraft industry undertakes attempts to decrease the number of
joints by introducing extruded panels, one-piece forged units, etc. However, this cannot
"eradicate” joints because these are required due to many circumstances. On one hand, we must
attach members made of diverse materials, envisage convenient installation/maintenance of
assemblies; on the other hand, reasonable articulation simplifies production, makes a structure
"more workable”, and reduces manufacture costs.

There are a number of papers dealing with calculation of force distributions in
bolted/rivetted joints, see, for example, contributions by P.A.Stepin [S], L.E.Jarfall [6]. Both
clastic and elastoplastic formulations were studied. These investigations are usually to joints that
may be considered as one-dimensional. In sophisticated assemblies such approach may prove not
to be acceptable at all. Thercfore, to analyze complex 3D bolted/rivetted joints, we suggest a
method based on the following assumptions:

1) a structural material is elastic;

2) friction between parts is neglected,;

3) in small-size areas various solutions may be superposed.

Of course, this approach at present has some disadvantages, since it does not "see
friction between sheets in a stack, does not account clastoplastic behavior of materials. None the
less, it is quite suitable for strength evaluation and can be used to predict the service life.

1"t
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In estimation of load-bearing capability of a joint, an important stage is determination of
local stresses necar fasteners: tensors may be computed by solving immediately the three-
dimensional contact problem with correction for friction and plasticity -- this is a very difficult
problem. However, the local stresses around fastencrs may be assessed using the superposition
principle. In so doing (see [6]), the local stresses are resolved into - stresses caused by a force
“going around” a fastenerand - stresses transferred by a fastener (Fig. 3.14):

~ [ AP P )

Gloc=a P K]‘(EGO- + KQWI

where K the factor of concentration with respect to the nominal bearing stress from the force P,

K> the concentration factor for a gross section loaded by the stress resultant getting around the

fastencr, d the hole diameter, t  the sheet thickness, 85 the coefficient for taking into account

the local increase in stresses that is due to deformation of the fastener, o the coefficient

accounting for the hole condition (including the surface roughness, residual stresses from cold-

work hardening, etc.), B the factor introduced to correct the result for interference between the
fastener and the hole.

Values of coefficients K; and K, are to be taken from plots in [7]; the coefficients 6,

o, and B are usually obtained by experiment. When performing a qualitative estimation of a
joint's concept, these coefficients may be set to 1.

Point-like links, such as rivets, bolts, and welding spots, are modelled by springs. In such
an approach, various relations (within a general assumption of elasticity) between displacements
of fastencr points 8p and the shear force P are used:

Sp:C P

C is a fastener compliance coefficient.

A large amount of theoretical and experimental studies were performed to evaluate the
fastener compliance coefficients [9-11]. According to Rosenfeld [11], the compliance of a
double-shear joint should be ¢valuated on the basis of a sum of displacements due to

- bearing of a stack (0, ),

- bending of a fastener (), and

- shear of a fastener (8):

1 1 1 1
6b5 =P [ + + + ] N
Sbf = P (Stg +16t3tp +8tqtH +tf>)/ (192EpIp): (3.33)
§s=P (2td + tp)/6Gbe-

Here, Fy, is a fastener cross-sectional area, I, is a fastener cross section moment of

inertia, t denotes thicknesses of components; subscripts d, p and b are respectively for the side
plate, the central plate, and the fastener.
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Table 3.8 compares analytical compliances Can and experimentally obtained values Ce.
The first group of three lines is for joints of steel parts. The fourth line is the joint in which a
plate is made out of aluminum alloy [9]. The fifth line of Table 3.8 reports the theoretical
compliance C,y and experimental data for a double-shear structure whose parts arc made from
acrylic plastic. Relative difference between analytical and experimental results cvidences that
these equations for computing the compliances can be recommended for practical analyses.

Note that this problem statement assumes that the bolt is represented by a single node in
a finite-clement mesh of each part in the build-up structure. This can lead to differing solutions
to the problem on meshes with different numbers of nodes.

Thesc circumstances have been a reason to conduct additional studies to evaluate how
much the components of the main stress state (the forces transferred by bolts) are influenced by
the singularity at the load application point when the bolt bond is approximated as a single
point. The main stress state of a three-row bolted joint (Fig. 3.15a) was obtained on meshes
differing in the discretization degree. Figure 3.15b demonstrates the results. Solid lines depict
variation of the relative valuc of the force in the edge bolt, assuming zero compliance (C=0,
rigid fasteners) and a real compliance (C =0, elastic fasteners); the finite-element meshes differ
in a relative cell size I/d around the loaded point (here, 1 is the mesh step length). Shaded bands
contain solutions obtained from finite-clement meshes with nxn division with a multiple-point
approximation of the bolt (nodes falling into the circle with a diameter equal to the bolt hole
diameter approximate the bolt). From Fig. 3.15 it is seen that scatter in relative values of the
force transferred by the edge bolt does not exceed 5%. If the fastener is approximated by a
single point a solution with the same accuracy may be obtained by using a ratio l/d>1.8.

The present relations have been implemented in the FITING program package [12] for
automatically computing the boltrivet compliance. The compliance calculation techniques are
known to be subject to further improvement, therefore FITING incorporates options for
immediately specifying the compliances C (for example, those obtained by means of [10]). The
relation (3.33) has been derived assuming that a load distribution along a bolt in a double-shear
joint is uniform. Nonuniformity of the load distribution for some types of joints is taken into
account in formulas of [10]. The above superposition and the calculated general stress-strain
states and force distributions were used to compute local stresses in the joint of Fig.3.16.

The structure is a butt joint of two aluminum wing panels reinforced by a quasi-isotropic
composite doubler attached by steel screws to the panels and the internal flange. Due to
symmetry the analysis covered a fourth part of the structure, including the left-hand half of the
scheme in Fig. 16a. Bolt rows are numbered successively from 1 to 3 (Fig. 3.16f); relative
forces P of the bolts are shown in Fig. 3.16b. Table 3.9 represents computed stresses at bolt
holes in the skin and the doubler. It follows from the Table that maximum local stresses in the
fastener zone are around screws 1-1 and 2-1. It has been in thesc areas that cracks appeared
during fatigue testing.

Stress concentration factors are computed as

KC = (Gloc)max
Cgross

Here, w is a structural width, d is a screw diameter, t is a thickness; indices s and d are
to the skin and the doubler.
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Thus, the results of analyscs of bolted/rivetted joints by the present technique  are
validated by experimental data from fatigue tests in respect of prediction of both the points and
sequence of crack formation; hence, the technique is currently suitable for qualitative cstimation,
and further development is anticipated to improve it to quantitatively evaluate joints.

3.3.2. Joints with continuous bond

With advent of high performance adhesives and the corresponding assembly procedures
the adhesive joints are more and more widely used in airframes. Perspectives are seen to utilize
adhesives to mount high strength doubler for mitigating stress concentration in structures with
cutouts: this undertaking may be envisaged both at a design stage and for strengthening the
existing structures. However, the doublers can hamper visual inspection of main parts, thus not
allowing operators to detect microcracks; therefore the analysis procedurc is required to be
accurate. The information available from the up-to-date literature is mainly to stresses in vertical
cross sections, and stress profiles over horizontal planes are left without attention.

The present Section is an attempt to provide a tool for estimating the influence of an
adhesive bonded doubler on elastic stresses along an edge of a circular cutout. Both a main plate
and a doubler are assumed to be manufactured out of thin sheets and comply with plane stress
state hypotheses of the theory of elasticity. In addition, we assume that the structure is subjected
to inplane loads and does not buckle.

_ Let us subdivide the structure into substructures so that either the doubler as a whole or a
part thereof be one substructure and the panel or a part thereof attached to the doubler be the
other substructure. Each substructure is further resolved into finite elements.

Interaction of the plate with the bonded doubler may be accounted for by introducing the
shear-tic elements shown in Fig. 3.17; these include compliances of both the adhesive and the
flat components in the vertical section. By analogy with a tension rod the relation of nodal
forces {Txi, Txj} to Ox displacements {ui, u;} may be written as

Txi 1 =1y
Lo : (3.34)
ij -1 1 {lu J
In (3.34) the 1/C; is a compliance coefficient which is meant as a mutual displacement of

points in midplanes of panels and the doubler under the force Tj=1. The displacement of the
doubler with respect to a panel may be described by the equation

a3 a4 as
ui—u = jfizder j’mdz+j37‘—dz,
7Y
anGp a3Ga a4Gd

where 1, =T, /F; ar=a) for two-sided doublers, and ay=a; for a doubler bonded on one surface;
Gy, Ga, and Gq are shear moduli of the plate, the adhesive, and the doubler, respectively; Fj is
the shear-tie element cross-section area (in the OXY plane).

We are allowed to assume that the shear stresses are maximum in the adhesive and
vanish at free surfaces and at a plate symmetry plane in the case of two-sided doublers [12].
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This shear stress distribution may be approximated by parabolas (Fig. 3.17) to give an estimate
of the stiffness coefficient Ci:

F.

Ci: :
Tl ta 11t
3G, G, 24 Gy

for the one-sided reinforcement. Here tp , ta and tg are thicknesses of the plate, the
adhesive, and the doubler, respectively. Shear in the OYZ plane can be accounted for in a
similar way.

Summing the stiffnesses (3.34) up with the coefficicnts of the plate stiffness matrix and
taking account of boundary displacement conditions, we derive a linear system of constitutive
cquations

{R}= [K’]{S} (3.35)

for the joint; {R} and {8 } are vectors of nodal forces and displacements, respectively; [K] is
the stiffness matrix.
Thereafter the shear stresses in the adhesive laycr are

_ /.2 2
Ta =Tz T Tyz
where
C i
tﬂ:—%}(uj—ui), tﬂz-l?(vj—vi),

1 1

u; and v; arc displacement of the plate and the doubler along the OX and OY axis.

Figure 3.18 shows a finite-element model of a plate with adhesive bonded doublers and a
central transverse crack. Due to symmetry with respect to the OX axis the analysis addressed a
half of the structure. The plate, doubler and adhesive layer have meshes with quadrilateral
elements with linear approximation of displacements. The plate is assumed to be manufactured
out of a 3.2 mm thick aluminum material. The composite doubler is from 0.1 mm dia. boron
fibers with epoxy resin binder. The adhesive thickness is 0.1 mm. Elastic constants for the
aluminum alloy are the elastic modulus E of 68.4 GPa and the Poisson's ratio 1=0.318; boron
fibers: E;=197, E»=14.5, G=5.22 GPa, 1,=0.168, 12=0.0124; adhesive: E=1.9 GPa, u=0.35.

Figure 3.19 represents distribution of strain €, along the line {y=0} in the plate and the
doubler: data from strain gauges bonded to the external surfaces of the plate and doubler are
given for comparison's sake. The results evidence the rather high accuracy of the computation
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[0/ ¢9o°]

method for determining strain fields in similar structures and estimating the stress intensity
factor.

Figure 3.20 demonstrates the influence of the composite doubler thickness and layup
pattern on the stress intensity factor Ky in the plate with a central transverse crack. The fracture
mechanics solves problems with arbitrarily oriented through cracks by using the virtual growth
method [13]; according thereto, the mode I (opening mode) and I (sliding mode) stress intensity
factors Ky and Ky, respectively, are computed as

| 1 rdK
%((K% + K} )oosd - 2KiKy sme) - —E{B}Tﬂa;l{s} (3.36)

by changing the crack tip position (along the crack path) by a length s and turning the tip
through the angle 6. In (3.36) E is an elastic modulus, [K] is the structure stiffness matrix, {0}
is the nodal displacement vector. The structure is modeled with triangular simplex elements;
errors depend on clement size, sce estimates in [13]. From Fig. 3.20 it is clear that the doubler
notably affects the stress intensity factor K;: the doubler with a relative thickness of 0.0625
reduces Kp by a factor of almost three.

Generally, a composite doubler may comprise several layers, cach with its own direction
of orthogonal principal axes; elastic constants of a doubler can be determined from relations of

[8]. Various layups (see Fig. 3.20) provide almost identical effects. But the [0/145°]‘and

layups have better characteristics in the transverse direction, so these patterns arc

recommended for use. It is known that layers in composite materials may delaminate; therefore,
such repair on an aircraft should for reliability be finished with riveting a doubler. Figure 3.21a
shows how the stress intensity factor Ky in a transversely cracked plate reinforced with a
composite doubler depends on the doubler thickness. Three types of joint are considered:
adhesive, riveted, and riveted with adhesive. A rivet diameter of 3 mm is selected so as to
ensure an equally strong joint. Rivets are shown by circles. From the Figure it is clear that a
riveted joint is less efficient than adhesive bond; rivets in addition to adhesive do not almost
reduce the stress intensity factor. Figure 3.21b compares efficiencies of doublers made of a
composite material, aluminum, and steel. The most notable reduction of the stress intensity
factor is attained with the steel doubler. The composite doubler is slightly less efficient, and the
aluminum onc greatly weaker. Dashed lines demonstrate variation of the doubler mass M as a
function of a doubler thickness. As to the structural weight saving concern, the composite
doublers should be preferred.

3 3.3. Allowance for three-dimensional features in joints

Applicability of theory of elasticity methods to investigation into structural behavior was
significantly augmented recent years due to development in numerical analysis techniques which
allow geometry of structures to be described quite fairly; also, increased memory/FLOPS
capabilities of computers allow researchers to effectively employ the FEM when concerning with
contact problems in 2D and 3D.

The constitutive equation of the assumed displacement method for a discretized domain
o , based on minimization of the Lagrangian functional, is
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[K}{8} = {R} (3.37)

using a nodal displacement vector {3 }, an external load vector {R}, and a structure stiffness
matrix [K]. For solving system (3.37), one should specify for a part of the domain ® the
boundary displacement conditions (or "kinematic" boundary conditions)

5="U, (3.38)

Let us consider two bodies of arbitrary shapes (i and j are indices to identify the bodies)
in Cartesian coordinate system XOY (Fig. 3.22).

Let Sic and Sjc be assumed surfaces of contact, i.e. those portions of the bodies i and j
which are close to each other and have points which can interact. Assume that the surface S;c at
every point Cix (k is a point number, k=1, 2, ...) has an outward normal nix which intercepts the
surface S at the point Cik. Such points Cik and Cjx will be referred to as conjugate points. As
noted in [14], conjugation of points can only be determined with a fair degree of accuracy
before solving the problem in case of an obvious pattern of contact deformation. Otherwise, the
contact area will be outlined after operation of an algorithm based on criteria of mutual non-
penetration of bodies. Introduce radius vectors rixand rix to identify initial positions of the points
Cix and Cjx, respectively (Fig. 3.14). After loading, the positions of these points in the plane will
be defined by the relations

{fik } = {roi } + {Sik}

(3.39)
{ric=fra} + {831}
where {Sik} and {6 jk} are displacement vectors of the conjugate points.
The criterion of contact of the points Cix and Cj can be written as
({rac} — {ric - {nic} = O cus. (3.40)

where S is a contact surface.
Considering egs. (3.39), from relations (3.40) we obtain a compatibility condition:

rac} = {re P {nic) = 85} - 8 ) {nucYlcues. (3.41)
For conjugate non-contacting points the following condition should hold:
({ric} — {ri - {nc} =< Ocues. (3.42)

which, in essence, expresses the condition of mutual non-penetration of bodies. In the projection
on the normal ny the condition (3) will be written as
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51+ 5 = 5 (3.43)

where 8{ and 652) are displacements of conjugate points of the bodies i and j along

the outward normal; 62") is the initial interference (the minus sign in (3.43), or gap, the plus

sign) between conjugatc points as measured along the normal nix.

The equations of equilibrium of isolated bodies i and j (with no contact between them) in
the matrix notation are

(Kil1 Kiz|{i1] _]Pi
[Ki21 Ki22]8i2) Qi

(Kji1 Kjzl[8ji] _|Pj
Kjp1 Kp2|[32f |Q;

where 8;; and §;, are displacements of the nodes that do not touch each other; 8;; and &, are

(3.44)

displacements of the conjugate nodes; P; and P; are prescribed external forces; Qi and Q; are
contact interaction forces to be sought for. We may perform the Gaussian elimination to write
¢q. (3.44) in terms of the unknown displacements of the contacting nodes:

[K:]{ﬁi}:{Ri}

(3.45)
(&3 ]f8,) =R}
where

[K‘..]: LKizz - KiQIKi—lllKiIQ]
[K;w = Lszz - szlKj—lllKju]
[Rﬂ = :Qi - Ki12Ki—111Pi]

. (3.46)
[R}_ =1Qi - KJ13K}111Pj]

Assume that between k-th conjugate nodes of the i-th and j-th substructures a link exists
that, in a local coordinate system, may be expressed as

Sik | | Qik
[Y]{Sjk} —{ij} (3.47)
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where

o3 8l

8 andd j arc displacements, Qi and Qj are contact forces acting on these conjugate nodes.

In two-dimensional problems,

[C]_[C,, 0 }
0 Cg

and in 3D ones,

c, 0 0
[c]=| 0 C¢ O (3.49)
o 0 C

n

where C,, C; andC,, are stiffnesses of the links as considered in the local system.

Let [A] be a direction cosine matrix that relates the local system {n,§,n} to the global

one {x, vy, z}.
By summing €qgs. (3.45) and (3.46), obtain equilibrium equations for the bodies:

K1+[v9 0% &) [Ri (3.50)
O K1+ B (R |

Coefficients of the matrix [v"] characterize the link stiffnesses in the global coordinate
system; they are

[71;1=[M]"[CI[A] (3.51)

If the structure is subjected to interference (quantified by a vector {60}), one should add

to the right-hand side of eq. (3.45) the component

Ry} =[K;1{d,} (3.52)

If the bodies under study do not touch each other ([y°]=0) the relations (3.50)

transform:

[KT] 0 (8] ki) {7}
. [K}‘] {61}— “[an]—l{l’ji} (3.53)
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They can be resolved with respect to unknowns {8;} and {3;}.

Of course, we assume here the general case — the body i is in contact with the body j.
The set of simultancous equations (3.50) would be solved using the following algorithm:

1. Specify preliminarily the contact nodes, assign the stiffness matrix [Ci].

2. Prepare the direction cosine matrix [A]

3. Compute the stiffness matrices for substructures and the right-hand side vectors
according to (3.44).

4. Transform eqs. (3.44) to cquilibrium equations for contact nodes by using the
Gaussian elimination procedure.

5. Employ (3.43) to determine the interference 8 (along the normal)

SR‘—"S?—S?—SO

6. Compute the forces R applied to the substructure i because of the interference Og:

R=[Kil{ dg };
this vector must then be added to the prescribed external load vector of the substructure under
consideration.

7. Use relations (3.51) to transform the link stiffness matrices to the global coordinate
system; add these matrices to the structure stiffness matrix (3.50).

8. Use (3.50) to determine displacements of contact nodes {6;} and {3;}.

9. Determine the contact forces along normals by using relations (3.52):

— C MGy — By
Qi = CihBy ~0i) (3.54)

10. Analyze the non-penetration criterion (3.42). Go to the item 11 below if eq. (3.42) is
satisfied, otherwise repeat the solution from the item 5.

11. Finish evaluating the displacements of contact nodes; carry on with usual procedures
of the Finite Element Method.

The above algorithm is not difficult to use to take account of friction forces Qg on the
contacting surfaces: after the item 9 these forces may be estimated by

Qg = - *signpe|Qx (3.55)

(here p g is a friction coefficient, & g is a displacement along a & axis), then added to the load

vector. However, such approach need be validated by treating realistic problems.

The present technique for contact problems is a simplified means, since the constitutive
cquations (3.50) incorporate complementary stiffnesses described by egs. (3.49). The normal
component C, models a contact layer. Tangential components Cg and C; seem to be useful for

modelling the friction forces and/or for simulating behavior of adhesives, etc.

It is clear from eq. (3.54) that the C, should be specified at a relatively high level, so
that the difference of displacements be small as compared to cach of the displacements. On the
other hand, after specifying too large a C, we will suffer from the round-off errors not allowing
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the contact forces Qic to be determined accurately. The required value of Cy was cstimated by
means of parametric studics. Consideration was given 1o interaction of two clamped plates of
uniform thickness t=1 made of a material with a Young modulus E=1 and Poisson’s ratio pu=0.3
(Fig. 3.23). The geometric size of the plate i along the 0X axis exceeds that of the plate j by
a magnitude of interference 8,=2. For simplicity's sake the example involves dimensionless
characteristics. The interference above causes uniform stresses O xexacr=-0.1. In the present
analysis cach of the plates is modelled with simplex finite elements with type 5x5 meshes. The

parameter Cp is parameterized by the equation C,,=E><10N where N is assumed to be varied
from 1 to 12. Figure 3.23 represents the calculated stresses as a function of the paramcter N.
This plot shows that two true digits in stresscs are ensured by N equal to 2 thru 8, with the best
results corresponding to N from 4 to 6.

3.3.4. Some results of computational analyses

Figure 3.24a depicts a mesh of a cylinder with two pistons which apply a force P=60 kN;
this combination models a power cylinder of a commonly used booster (Fig. 3.24b). The model
is composed of simplex axisymmetric triangular eclements. The total number of unknown
displacements is 1298; the contact problem is limited to investigation of 44 displacements of
nodes on the contact surface. Axial stresses Gx on the internal and external surfaces of the
cylinder are shown in Fig. 3.24¢; they are compared to the test data got from strain gauges of 5
mm gauge length.

Consider interaction of a usual lug with a bolt (Fig. 3.25). Both the bolt and the lug are
modelled by tetrahedrons. Symmetry allows us to treat a one-fourth of the global model; the lug
is covered by 500 nodes, and the bolt, by 684 nodes. The total number of displacements to be
found is 3552. The load o=74 MPa is applied to a lug section at X=0 and is transferred to the
bolt that outstands from the lug as far as half a lug thickness. We assume that the bolt is
separated from the lug by a gap =0.05(1-cos0 ). Figure 3.25 represents the contact stresses as
a function of the angle 6 in the lug sections at Z=0 (a "middle section”) and Z=40 mm (a
"limiting scction"). These stresses are compared to the results of [3.15] for a two-dimensional
problem. It is scen that the data differ not only in values but in trends. The minimum contact-
stresses are in the middle section, and the maximum ones are seen on edges of the lug hole; this
indicates the bolt being deformed in the 0XZ plane.

The other example is the propfan blade root loaded with stresses due to inertia of a
blade. Currently, our design burcaus develop spar-based constructions (Fig. 3.26). Such a
concept provide weight savings and is very reliable in service. It includes a structurally
significant item — the root where a polymer matrix composite is coupled with a metallic fitting.
A schematic of the model is depicted in Fig. 3.27.

The fitting is made of 40KhNMA steel with E=210000 MPa and p=0.3. The VPS-20

compositc utilized in the blade has a radial Young modulus E;=20000 MPa, an axial modulus
E»=46000 MPa and a tangential modulus E3=12000 MPa; the shear modulus is G=3600 MPa,
and Poisson's ratios are i, =0.27, u,3=0.25 and pn3=0.25.

The model in Fig. 3.28 comprises 11 substructures with a total number of unknown
displacements of 2556. The structure was subjected to axial tension caused by the blade body
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forces. In the course of analyses the load was incremented by steps of 100000 N from 100000
to 400000 N, and the domain of contact between the root fitting and the composite part was
outlined; the interaction force was evaluated. Friction between the parts was assumed not 1o
exist. Analyses showed that the contact domain does not alter over the whole of the load range;
the number of iterations for outlining the contact domain (with a load fixed) was 4 at the first
step and 2 at the last step.

Figure 3.29 compares radial interferences (a solid line) with test data (Table 3.10)
received from dial indicators (Fig. 3.30) mcasuring the diameters of certain cross sections under
the applied load of 200000 N.

For an article with a thin rubber layer the results agree well. The dashed line in Fig. 3.29
depicts the radial interferences obtained by analysis for an article where the composite and the
fitting are assumed to be adhesive bonded. Figure 3.31 shows axial profiles of internal
longitudinal forces in the two structural components.

Table 3.11 represents verification of equilibrium conditions for contact force projections
on the main axis:

n
P= ZNi sina;

1=1

where P the axial load applied to the unit, n the number of contact nodes, N; the contact
interaction force in a node i, a; the angle of slope of a collar at a node i (measured from the
_main axis).

The maximum tensile stresses in the composite part are seen on the external surface near
the fourth collar of the fitting. At a root of this collar, but in the fitting, one can see significant
axial normal stresses of 200 MPa.

Structural concepts of joints with composite parts are very diverse, depending on both the
application area and the manufacturing process. In particular, concentrated loads from metal
parts may be transferred to composite panels by means of joints demonstrated in Fig. 3.32.

The concentrated load P is transferred via a steel bolt (4) with the aid of the metal
bushing (2) to the composite panel (1). The bushing (2) comprises two parts that are screwed
and cemented to the panel at the outer surface.

The bolt and the bushing are made out of steel with the Young's modulus E=2000 GPa
and the Poisson's ratio p=0.3. The panel material has the following characteristics:

E«=50 GPa, Ey=16 GPa, E;=20 GPa, Gxy,=5.2 GPa, Gy.=0.8 GPa, Gzx=0.8 GPa, pxy=0.27,
Hyx=0.23, Hzx=0.23.

The analysis of the symmetric structure was limited to two octants: XOYZ and (-X)OYZ
(Fig. 3.32). Kinematic boundary conditions relevant to the symmetry were specified; in addition,
the left-hand edge of the panel was fixed. The load P/2 was applied as a distributed shear stress
1=P/2F at thc upper plane of the bolt (F is the bolt sectional area). The analytical model
comprised five substructures with the total number of unknown displacement being equal to
5961. Three versions were considered. In the first, the panel hole and the bushing were assumed
not to be bonded with adhesive, so their surfaces contact freely, with no friction. In the second
version, the bushing was assumed to be cemented to the panel by a no more than 0.1 mm thick
adhesive layer whose elastic modulus is 2.5 GPa. In the third version a steel panel (E=200 GPa
and p=0.3) with no adhesive was addressed.
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The contact arca was outlined, and the negative pressure condition met, for 5 iterations in
the first and third cases and for four in the second case.

Figure 3.33 presents tangential stresses over the internal surface of the bolt hole: these
are referred to the bearing stress oy, =P/td (where t is the panel thickness and d is a hole

diameter) and compared to stresses in a similar structure in which all parts are made of steel.
The external load is such that ©,=200 MPa. From the pressure profiles it is seen that

orthotropy of the composite material makes the stresses more nonuniform along both the
circumference and the bushing axis (sections A and B); the circumferential stresses in the
composite part are increased by a factor of 1.65 as compared with metal. If the bushing and the
composite part are coupled with an adhesive with high elastic properties (the shear modulus
G,=2500 MPa) then the circumferential stresses over the composite surface get notably reduced

(versions 1 and 2 in Fig. 3.33).

Consider a plate loaded with two tension forces P applied via two bolts (Fig.3.34). The
real structure is a 180 by 48 by 2 mm plate made out of KMU-4E composite with the [0/45/90]
layup. It has two 12-mm holes wherein the steel bolts are inserted to apply the external forces P.

The bolts are torqued (via nuts laid on washers) to a moment M that gencrates an
internal tension force Q. In experiments, three cases of fracture of the specimen loaded with
Q=0, Q=17500 N, and Q=35000 N were considered. Bolts were made of 30KhGSA steel with
the modulus of elasticity E=200 GPa and the Poisson's ratio n=0.3. The plate is composite:

E,=60 GPa, E,=60 GPa, E3=60 GPa, G12=14 GPa, Ga3=14 GPa, G31=14 GPa, p12=0.35,
n23=0.35, n31=0.15.

The analytical model, due to symmetry, was 1/8 of the entire structurcand consisted of
three substructures: one modeled the bolt and the other two substructures represented the
composite plate. The total number of nodes was 800; the number of displacements, 2400; and in
contact were 204 nodes.

Figure 3.34 shows dependence of the maximum plate tangential stress Gg on the force P

at the friction coefficient pr=0.15. It is easily seen that increasing the clamp-up force Q reduces
the stress og. If one knows the allowable stress [o] (from Fig.3.34) then Fig.3.35 may be

used to determine the ultimate tensile force [P}.

Taking into account instability of properties of composites, the ultimate forces in Fig.
3.35 are given for two values of allowable stresses: [0 ]=333 MPa and [c ]=400 MPa. Also,
ultimate forces P obtained in experiments arc shown. The experimental values in Fig. 3.35 are
seen to be in good agreement with stresses computed at [ o 1=400 MPa.

Figure 3.36 demonstrates variation of the maximum tangential stress Op as a function of
the friction coefficient at fixed values of the clamp-up force Q (17,500 N) and the external load
P (11,250 N). Increasing the friction coefficient reduces the stress, and the maximum value turns
out to be at deeper points of the plate.
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4. Conclusion

In compliance with NCCW-73 specifications the TsAGI and MGATU have fulfilled a
research work in two areas: "Analysis of postbuckling behavior of composite panels" and
"Development of general model of joints in composite structures”.

The following major results have been provided:

- a theoretical solution to the problem on postbuckling behavior of a composite plate
under multiaxial load in the case when a wave type can change over in the course of
postbuckling deformation;

- relations that describe (1) stiffness reduction coefficients for a buckled skin in a
stiffened composite panel and (2) load-bearing capability of the panel under biaxial compression
and shear;

- a method to analyze the commonly used types of adhesive bond areas in composite
structures, assuming that the adhesive layer behaves linearly;

- a model for analyzing irregular adhesive/fastener joints in composite structures; some
joints were analyzed by using finite element methods.

Proceeding from objectives of the Cooperative Agreement NCCW-73, work status and
technical appropriateness, we propose the research to be extended to cover the following
problem areas:

. - allowance for temperature difference between stiffeners and skin; estimating the
influence of the difference and the related thermal strains and stresses on postbuckling behavior,
skin reduction factors and load-carrying capability of stiffened composite panels;

- account of thermal effects and a real nonlinear stress-strain relation for an adhesive
layer -- analytical and finite-element models of joints in composite structures;

- parametric analyses of composite structures and their joints — comparing various
methods to estimate the accuracy and applicability areas thercof and the structural parameters.

A schematic and the assumed dates of the new work package are represented in Fig.3.37.
Researchers (i.e., TsAGI and MGATU) and the general direction of the studies are as before.
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Postbuckling plate surface shape

Figure 2.4.

Natural mode shape of CFRP plate

Figure 2.5.
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Figure 2.12. Distributions of stress resultants N, and moments M, over
section {x/b=0.5}
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Figure 2.13. Distributions of stress resultants N, and moments M, over
section {x/b=0.5} of a plate
1, ¢=0; 2, ¢=130°;
3, p=145°, 4, ¢=160°;
S, ¢=90°
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Figure 2.16. Stress T, profile over section {x/b=0.5}
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Figure 2.17. "Relative stress relative out-of-plane displacement” curves for
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(p==145° (line 3)
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Table 3.2 Two-sided doubler
Characteristic Dimensionality Sheet Adhesive layer Doubler
Thickness mm 2 0.1 1
Modulus Ex MPa 7-10* 0.35-10* 7-10
Modulus Ey MPa 7-10° 0.35-10° 7-10*
Shear modulus Gyy MPa 2.7-10* 0.25-10* 2.7-10°
Table 3.3 ONe-sided doubler
Characteristic Dimensionality Sheet (L) Adhesive layer (a) Sheet (R)
Material - Aluminum Epoxy resin Aluminum
Thickness t mm 2 0.1 1
Modulus Ex MPa 7-10° 0.35-10* 7-10*
Modulus E, MPa 7.10* 0.35-10* 7.10*
Shear modulus Gy MPa 2.7-10* 0.25-10* 2.7-10*




Table 3.4 Inserted joint

Characteristic Dimensionality Sheet (L) Adhesive layer (a) | Sheet (R)
Material - Aluminum Epoxy resin CFRP
Modulus Ey MPa 7-10° 0.3-10° 16-10°
Modulus Ey MPa 7-10* 0.2-10* 1.4-10*
Shear modulus Gyy MPa 2.7-10* 0.210* 0.63-10*
Table 3.5 Symmetric overlap

Characteristic Dimensionality Sheet (L) Adhesive layer (a) Sheet (R)
Material - CFRP Epoxy resin CFRP
Thickness t mm 1 0.1 1
Modulus Ex MPa 16-10° 0.2-10* 1610*
Modulus Ey MPa 1.4-10* 0.15-10° 1.4-10°
Shear modulus Gyy MPa 0.6-10* 0.05-10* 0.6-10*
Table 3.6 Asymmetric overlap

Characteristic Dimensionality Sheet (L) Adhesive layer (a) Sheet (R)
Material - Aluminum Epoxy resin CFRP
Thickness t mm 2.0 0.1 1.0
Modulus Ex MPa 7-10* 0.2-10* 16-10*
Modulus Ey MPa 7-10* 0.15-10 1.4-10*
Shear modulus Gyy MPa 2.7-10* 0.05-10* 0.6-10*
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Table 3.8 Comparing analytical (Cap) and experimental (Cex) compliances
# tp td dv Ep Ea Ev Can Cex Y
mm | mm | mm N/mm? N/mm? N/mm? mm/N mm/N %
1 10 5 10 210000 210000 210000 0.0345 0.030 15
2 10 3.75 10 210000 210000 210000 0.00347 0.032 8
3 10 2.5 10 210000 210000 210000 0.0384 0.038 1
4 10 5 10 71000 210000 210000 0.0520 0.047 11
5 10 5 5 3600 3600 3600 2.28 2.3 -1
Table 3.9 Local stresses at screw holes in skin (os) and doubler (op)
Bolt| AP, 1Ky [Kig |Kas [Kaa AP ( _ﬁ) ( AP) [ ‘_Az)

# N (Kl.a._t). Ki a0, K2.m ’ K2y ) OSloc | ODloc
1-5 19.70 1.8511.85 |3.18 |3.18 0.375 0.203 0 0.349 0.375 0.552
2-5 |8.95 1.8511.85 [3.18 |3.18 0.311 0.188 0 0.572 0.344 0.760
3-2 [8.75 1.80 | 1.80 |3.15 |3.15 0.328 0.178 0 0.667 0.328 0.845
1-1 {9.70 1.85[1.85 |3.18 {3.18 0.375 0.315 0.241 0.190 0.616 0.505
2-4 {8.70 1.8511.85 [3.18 |3.18 0.335 0.287 0.190 0.445 0.585 0.732
3-1 |8.22 1.80 [ 1.80 [3.15 |3.15 0.308 0.264 0.182 0.522 0.490 0.786
1-3 [9.22 1.8511.85 |3.18 {3.18 0.355 0.304 0.349 0.381 0.704 0.685
2-3 [8.47 1.80 | 1.80 ]3.15 |3.15 0.317 0.272 0.308 0.409 0.625 0.681
1-2 [10.20 [1.85}1.85]3.18 |3.18 0.393 0.393 0.451 0.254 0.844 0.647
2-2 19.32 1.80 [1.80 | 3.15 |3.15 0.349 0.349 0.441 0.277 0.790 0.626
1-1 [11.45 [1.85]1.85 |3.18 |3.18 0.441 0.529 0.585 0 1.026 0.529
2-1 110.60 |[1.80 {1.80 [3.15 |3.15 0.397 0.477 0.607 0 1.004 0.477




Table 3.10 Experimentally obtained values of radial interference (in
microns)
Collar Radial displacements, mum
Load, Px104, N
0 [5 [10 | 15 [20 [25 [30 135 [40
With rubber layer
| 0 +10 0 +10 0 +20 +20
0 -10 +10 +10 +30 +30 +40 +50 +50
0 0 0 0 +20 +10 0 -20 +70
2 0 -10 0 +10 +40 +70 +80
0 +10 +40 +60 +150 |+110 |+140 |+140 [+180
0 0 0 +50 +60 +50 +110 |+130 |+210
3 0 -10 +20 +50 +80 +140 |+160
0 +20 +40 +80 +110 |+150 [+200 |+230 |+260
0 -10 -10 +120 |[+140 [+170 |+230 |+210 +180
4 0 +20 +50 +130 |+180 |+250 |+260
0 +50 +110 |+150 |+220 [+270 [+300 +350 |+380
0 +50 +130 |+200 |+260 |+260 [+350 +370 |+420
Without rubber layer
1 0 +20 +10 -30 -40 -50 -50 0 -10
2 0 +10 0 -10 -10 -10 +10 -10 +20
3 0 0 -30 +50 +30 +80 +80 +90 +110
4 0 +10 +40 -120 +140 | +180 [+200 [+210 |+240
Table 3.11 Distribution of contact forces over the collars
Contact nodes Ni sin oy Nisin oy
5 97030 0.510 49485.3
Total load on collar 1 49485.3
10 33100 0.419 13868.9
11 11800 0.416 4908.8
12 46030 0.433 19931.0
13 12900 0.379 4889.1
Total load on collar 2 43597.8
18 36640 0.385 14106.4
19 25610 0.390 9987.9
20 40430 0.394 15929.4
21 19010 0.362 6881.6
Total load on collar 3 46905.3
28 32520 0.394 12812.9
29 59650 0.447 26663.6
30 79550 0.447 35558.9
Total load on collar 4 75035.4
Gross total 215023.8
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Figure 3.28. Finite element model of propfan blade root
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Figure 3.32 Schematic of joint
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Figure 3.33 Distribution of stress og over internal surface of hole
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